
Bahria University Journal of Information & Communication Technologies Vol. 10, Special Issue, September 2017

Page 15 ISSN – 1999-4974

Computation Offloading: Is it Practical and Feasible?

Abdul Haseeb Shujja, Imran Saleem, Sher Afghan

 Abstract – Mobile phones are usually poor in terms of

battery, computation power and network bandwidth, which

result in applications with limited functionality in terms of

complex computations. A solution to this problem is

“Computation Offloading”. By sending resource intensive

computations to a server, precious resources like battery and

processing power can be saved on a mobile device. In the past

few years, many techniques have been proposed to approach

this matter ranging from utilizing virtual machines with cloud

servers and mobile network infrastructure to using nearby

mobile devices to perform computation intensive tasks. This

paper is a survey on existing techniques and systems for

computation offloading and in light of those analyzes whether

computation offloading is feasible to be deployed commercially

with the current infrastructure and technology available. It also

analyzes the major problems and identifies possible future

research areas for computation offloading which may help in

overcoming the current issues.

 Index Terms – Computing, Offloading, Ubiquitous

Computing

I. INTRODUCTION

 It is quite fair to say that this is the era of voracious

mobile computing. The greatest obstacle in today's mobile

computing is the limited resources of mobile devices. We

have high-speed processors, GPS, high-resolution screens

and much more in our mobile devices but we need power to

keep these things alive. Short lifespan of batteries is the

greatest obstacle in meeting our mobile computing

requirements. We need to reduce the gap between the

required and available power. We either increase the lifespan

of the batteries or somehow reduce the computation on our

mobile devices. In near future, we do not see a significant

increase in battery lifespan [1]. Mobile devices are resource

constrained specially in terms of energy. A lot of work has

been done to overcome the bounds of limited mobile devices

resources by means of reducing computations on mobile

devices and one of them is by using the art of 'code

offloading' which shares the same idea behind RPCs where

procedural calls are made to a remote resource intensive

server and this way performing computations locally on

smart phone can be avoided. Connectivity between mobile

client and the remote server plays a pivotal role in code

offloading because of the battery-backed power of mobile

devices and inherently unreliable wireless channel of

communication. Code offloading in mobile devices can yield

fascinating results in lab environment.

 In this paper, we analyze some of the major approaches

for offloading and identify areas of research that we need to

focus in the future to make offloading commercially viable.

We analyzed different architectures for code off-loading to

filter down the barriers of this technique of overcoming the

resource constraints of mobile devices available today to

meet our rapidly growing needs of mobile computing.

 As mentioned above, energy conservation is the primary

concern when it comes to utilizing the full potential of smart

phones. Different studies have shown that longer battery life

is the top concern for smart phone users [2, 3]. Computation

offloading can help reduce battery consumption, but there

needs to be some decision making involved as to when this

is feasible or not. Other than computations, the second most

energy-consuming task is communication in a mobile

environment, certain rules need to be enforced when

offloading which would determine whether offloading is

beneficial or not in a current scenario. If energy required to

offload data is less than what is required to compute it locally

then the better choice is to offload the data. Previous studies

have shown that applications with large computation-to-

communication ratio benefit more from code offloading [4].

 Other than energy there are several other factors that

affect this decision-making process. Available bandwidth, its

cost and latency are a few major ones. Many algorithms have

been proposed to make these decisions possible to increase

performance or conserve energy. These techniques make

these decisions based on several factors which include

bandwidths, server speeds, available memory, server loads,

and the amounts of data exchanged between server and

mobile systems. The solutions include partitioning programs

[5, 6, 7, 8] and predicting parametric variations in application

behavior and execution environment [9, 10].

 Once these offloading decisions are made, the next

question that arises is what to offload? Obviously, parts of

code, which involve interactions with the user or

environment, cannot be offloaded to the server. However,

other parts of the code, which involve intense computations,

can be offloaded to the server. The algorithm used for code

offloading also needs to specify whether to offload all this

code to the server or just send parts of it. Although each

algorithm describes its own way of partitioning code, but,

these can be grouped into two major categories i.e. [4]

● Static Partitioning

● Dynamic Partitioning

 In case of Static Partitioning, the programmer must

specify which part of the code should be offloaded to run at

the server. In addition, at run-time if the offloading

parameters allow it, that part of the code is offloaded to the

server.

 While in Dynamic Partitioning of code, the programmer

might also have to specify off loadable code, the final

decision on whether the code should be offloaded or not is

dependent on the algorithm used. This decision could be

Abdul Haseeb Shujja, Imran Saleem and Sher Afghan, Department of Computer

Science, School of Professional Advancement, University of Management and

Technology, Email: abdul.shujja@umt.edu.pk, imran.saleem@umt.edu.pk,

sher.afghan@umt.edu.pk. Manuscript received Dec 08, 2016; revised on June 12,

2017; accepted on Aug 31, 2017.

mailto:abdul.shujja@umt.edu.pk
mailto:imran.saleem@umt.edu.pk

Bahria University Journal of Information & Communication Technologies Vol. 10, Special Issue, September 2017

Page 16 ISSN – 1999-4974

based on network conditions, previous behavior of the code

or the amount of data to be transferred.

 A significant amount of research has been done over the

past 15-20 years concerning computation offloading about

making it feasible, reliable decision-making and developing

proper infrastructures. In the latter half of 1990’s the focus

was more on making code offloading more feasible for

mobile environments [11,12,13,14,15,16,17,18,19] as the

mobile bandwidths at that time were insufficient for any

practical implementation of offloading. in the early 2000’s

the focus shifted towards the decision-making process

[5,6,8,9,20,21,22,23,24,25] involved and then later on with

advances in cloud computing, increased network bandwidths

and virtualization technology new doors were opened with

regards to the infrastructure of code offloading environments

[7,26,27,28,29,30,31]. These technologies have made

computation offloading more practical in a real-world

environment than just in lab setups. In the recent years, a lot

of solutions have been proposed which can be used to

implement offloading on a commercial scale [32, 33, 34, 35,

36].These algorithms use either cloud environments or

virtualization technologies or a combination of both in most

cases.

 The purpose of this paper is to analyze some of the

leading techniques covering computation offloading while

asking the question; is it feasible for the current mobile

networks we have and if not what needs to be done to make

it more practical? For the purpose, we have done a detailed

analysis of some of these techniques. The paper is organized

as follows: Section 2 explains the current state of the

research, which has been done concerning code offloading.

Section 3 discusses the major enabling technologies in this

field. In section 4 we discuss the problems we have identified

as being the major reasons behind code offloading not being

practical yet. Finally, section 5 concludes the paper with

some future research topics, which could help, eliminate the

problems identified.

II. CURRENT STATE OF CODE OFFLOADING

 As mentioned in the introduction there has been a lot of

research on the subject of code offloading over the years. In

this section, we describe a summary of some of the latest

studies in this subject. However, before that it is necessary to

understand the basic reasons why computation offloading is

so important and what are the factors affecting our decision-

making process when offloading code to a server. Section 2.1

explores these factors and 2.2 take a brief overview of the

latest papers.

A. Offloading decision making

 Although many factors can affect offloading code, but,

the two main criteria affecting this are 1. Performance and 2.

Energy consumption. One thing that needs to be clarified

here is that the application code can be divided into two

distinct parts: one which can never be offloaded to the server

(includes user interface and inputs from the environment)

and the second one which ‘might’ be offloaded to the server

(does not interact with user or environment and is purely

computational in nature).

 In this section, we discuss these criteria and how they

affect the decision-making process.

1) Performance enhancement

 Offloading can be used to enhance response times of

complex mobile applications, which require many

computations and would take a lot of time if done on a device

with very little computation power like mobile phones. A

suitable example for this could be a path-finding robot that

has to detect obstructions in its path and change its course

accordingly. Object and obstruction detection algorithms are

usually very complex and require many computations. The

processor controlling the robot might not be that fast to run

these algorithms and detect these objects in real-time. But if

we offload the object detection part to a fast server then it

can be done in no time and the robot will avoid colliding with

any of those objects. [6]

 Another example in context to mobile phones could be

of an application which relies heavily on data from different

peripherals like GPS, accelerometer, and camera etc. and

needs to evaluate the readings from all these collectively.

Doing such calculations on the mobile device will be

significantly slower than if they are done on a desktop

machine. There are also multiple other scenarios in which the

performance of mobile devices can be enhanced by using

offloading.

 Now, we need to define some parameters to establish

when offloading code to a server might result in performance

enhancement and when it is better to just perform

computations on the mobile device. On an abstract scale, we

can say that the mobile device’s performance will be

enhanced if the communication link between the mobile

client and server is fast and the amount of data exchanged is

smaller in relation to the calculations required. Inequality (1)

can be used to describe the relationship between these

different parameters: [4]

𝑤

𝑆𝑚
>

𝑑𝑖

𝐵
+

𝑤

𝑆𝑠
⟹ 𝑤 × (

1

𝑆𝑚
−

1

𝑆𝑠
) >

𝑑𝑖

𝐵
 (1)

Here Sm is the speed of the mobile system, w is the

amount of computation that may be offloaded to the server,

di is the data sent to the server, B is the bandwidth of the

channel and Ss is the speed of the server. This inequality

holds if we have:

● large w: The program requires heavy computations

● large Ss: The server is fast

● small di: The data sent to the server is small

● large B: The bandwidth is high

 Therefore, from the above description it is quite clear

that only those parts of code should be offloaded which

require heavy computations and very small communication

overhead. Otherwise, the performance gain would not be

sufficient to make any difference.

Bahria University Journal of Information & Communication Technologies Vol. 10, Special Issue, September 2017

Page 17 ISSN – 1999-4974

2) Energy consumption

 Energy is the primary concern for mobile phone users

these days. As these phones are not only used for voice

communication anymore but their users also use them for

acquiring and viewing videos and photographs, playing

games, browsing the internet or as personal gadgets etc. All

these different uses increase the power consumption of the

mobile and reduce battery timings. And even though battery

technology has advanced a lot recently, but, it has not been

able to keep up with the ever-increasing demand for smaller,

lighter and longer lasting batteries. One possible solution

here is to offload the more energy consuming operations so

that we can save power on our mobile devices [32]. We can

use a similar inequality like the previous section to describe

the constraints here as well: [4]

𝑤 × (
𝑃𝑚

𝑆𝑚
−

𝑃𝑖

𝑆𝑠
) > 𝑃𝑐 ×

𝑑𝑖

𝐵
 (2)

 Here Pm is the power on the mobile device, Pc is the

power required to transfer data from the mobile to network

and Pi is the power consumed at the mobile device while

waiting for the results from the server. From analyzing (2),

we can see that energy consumption of the mobile device will

be minimized when the same requirements as the ones for (1)

are met.

 However, these inequalities are based on the assumption

that the data being transferred is from the mobile device to

the server. If the data is already present somewhere on the

internet (pictures or videos etc.) and the mobile device only

passes the link for that data to the server, then it can fetch

that data from the corresponding url and hence increase the

performance and reduce the battery consumption as well.

B. Analysis of some leading papers

 As mentioned earlier, a lot of research has been done

over the past years on the topic of mobile code offloading.

Recently with advances in cloud computing and

virtualization technology, new doors have been opened in

this field as well which have taken computation offloading

to a completely new level. In this section, we discuss some

of the recent papers, which utilize these technologies to

enhance the mobile computing environment. Although there

are many papers that discuss this subject but mentioning all

of them here would be impossible. Therefore, we picked only

the ones that are implementing distinctively different

approaches to give the readers a general idea of what the

general trends concerning mobile code offloading are these

days. Table 1 summarizes the approach used, strengths and

weaknesses of each framework.

1) CloneCloud

 Its architecture describes a way to partially off-load

execution from the smart phone to the computational service

infrastructure hosting a cloud of smart phone clones. Smart

phone clone at the cloud is a VM of the smart phone OS

synchronized with the state of the corresponding smart

phone[33]. Computationally intensive and background tasks

which are less user interactive can be off-loaded to execute

on the clone running at a resource rich machine in the cloud.

These tasks can be file scanning, photo analysis and web

crawling etc. Off-loaded tasks can continue execution even

when the smart phone is turned off which greatly helps

saving power of the smart phone. CloneCloud uses semi-

dynamic partitioning of the code and synchronizes phone

with the clone through either fine grain or coarse grain

synchronization depending on the off-loaded application

requirement and available bandwidth. Updates for

synchronization are sent to the clone in the form of deltas to

save bandwidth and power. For a practical demonstration, an

Android OS application was offloaded to the server where a

Dalvik VM [42] was running with the same application. The

Replicator running at the smart phone by sending updates to

the clone synchronizes clone and smart phone application

status. For a practicalapplication, Alien Dalvik [40] can be

used to run Android Application on non-Android hardware

such as x86 architecture.

2) Cloudlets

 Another design is to use cloudlets for code off-loading.

Cloudlets are widely spread internet infrastructure whose

compute cycles and memory are leveraged by nearby mobile

devices. These cloudlets are usually not much resourceful

machines but are resource rich compare to the smart phones.

Cloudlets can be desktops, net books, kiosks or customized

ATM. Cloudlet approach is different from Cloud based

approach where smart phones connect to the main cloud,

which can be at a multi hop distance. Cloudlets form a peer-

to-peer network among themselves along with connecting to

the main cloud at the same time[40]. Every device connected

to the cloudlet is registered at the main cloud and can connect

to the main cloud or the cloudlet depending on the

throughput and latency. Study [40] shows that for maximum

4 wireless hops from smart phone to the cloudlet, the cloudlet

based approach performs poorly for some of the requests,

though the cloudlet based approach can outperform the cloud

based approach for most of the requests. The cloudlet-based

approach always outperforms the cloud-based approach

when there are a maximum of 2 cloudlet hops. In scenarios

where the maximum number of cloudlet hops is more than 2

the cloudlet-based approach doesn’t always outperform the

cloud-based approach. So it is suggested that the cloudlet

based approach is to be used when the maximum number of

Fig. 1. Cloudlet based Architecture

Bahria University Journal of Information & Communication Technologies Vol. 10, Special Issue, September 2017

Page 18 ISSN – 1999-4974

cloudlet hops does not exceed 2 which can be achieved by

using latest technologies such as Flashing [41] or by using

Wi-Fi repeaters. Additionally, cloudlets can benefit by

keeping routing tables with themselves so the devices of one

cloudlet can connect to the devices of other cloudlets or main

cloud.

3) MOMCC

 Mobile devices are inherently resource poor both in

terms of energy and computation power. This paper

addresses the later of these two issues by proposing a market

based architecture in which nearby mobile devices are used

to augment the computation power deficiency of these

devices. The basic motivation behind this idea is that most

other techniques being proposed require the use of

specialized hardware (small servers or high-speed internet

connectivity). However, by using this we can eliminate the

costly hardware and use the neighboring mobile devices for

our computations, as they would have much smaller latencies

with our client as opposed to the long latencies experienced

in WAN and mobile networks. Although this approach may

result in draining the batteries of neighboring mobiles, but as

compensation to that, service providers based on how much

computations they have performed can pay the owners of the

mobile devices, which are performing the computations. In

addition, the mobile user who requested the computations

will have to pay according to the number of computations

offloaded.[35]

 The basic architecture this paper proposes is one based

on and very similar to web services. Every developer that

wishes their application to be able to be offloaded should

develop it like a web service with a map-reduce like

architecture. The overall architecture of the system consists

of four distinct entities namely: service developer, service

governor, service host and service requester. Service

developer is the programmer who develops the application,

service host represents the mobile devices, which offer their

services for computations, service requestor is the client or

the service user and service governor is a central entity,

which keeps track of the services, hosts, requestors and

distributes the workload between the service hosts.

 This kind of publicized computation may result in

malicious attacks on users. To stop that a certain level of

security needs to be implemented, this is also the job of the

governor. The service developer develops an application,

registers itself with the governor, and publishes the

application there. The service requestors download the

application from the governor and the service hosts are

published the code they have to execute from the governor.

This approach removes any interaction from the developer

during execution by totally isolating it from the users, hence,

removing any possibility of malicious applications acting as

Trojans/spyware etc. The second biggest security risk in this

environment is the service hosts. Each of these mobile

devices will have different levels of security and reliability

on it. For this purpose, the governor constantly monitors

these hosts and when assigning a job, only assigns it to hosts,

which fulfill the minimum-security criteria for that

application.

Fig. 2 MOMCC Cycle [35]

 This approach can be very attractive and useful for both

mobile users and service providers as they can act as service

governors while paying service developers and hosts for their

services; they can charge the service requestors for the

services they request.

4) MAUI

 MAUI is a system that enables fine-grained energy-

aware offload of mobile code to the infrastructure. Previous

approaches to these problems either relied heavily on

programmer support to partition an application, or they were

coarse-grained requiring full process (or full VM) migration.

MAUI uses the benefits of a managed code environment to

offer the best of both worlds: it supports fine-grained code

offload to maximize energy savings with minimal burden on

the programmer. MAUI decides at runtime which methods

should be remotely executed. Driven by an optimization

engine that achieves the best energy savings possible under

the mobile device’s current connectivity constraints.[32]

 MAUI achieves its superior results by some of the

benefits of today’s latest managed code environments. The

authors have used the Microsoft .NET Common Language

Runtime (CLR) for their implementation, however, the same

could be done through java also. The managed code

environment enables it to ignore the instruction set

architecture differences between the mobile (ARM) and the

offload server (usually x86). First, the CLR is used to

generate two copies of the code, one that runs on the client

and the other one that runs on the server. Then it uses

program reflection combined with type safety to identify

which portions of the code can be offloaded to the server. It

also profiles each method to determine its net shipping cost

with context to local resources and network conditions and

after comparing them only offloads those methods whose

offloading can be beneficial in terms of energy conservation

and faster execution. All this is performed by the MAUI

profiler, which is constantly running in the background. If

after some time offloading a method becomes too costly,

MAUI can always execute it locally and in the process saving

valuable resources.

 MAUI provides an architecture in which programmers

identify the methods, which can be offloaded to the server,

but it is not necessary that they would always be offloaded.

Deciding that is the job of the MAUI framework

Bahria University Journal of Information & Communication Technologies Vol. 10, Special Issue, September 2017

Page 19 ISSN – 1999-4974

Fig. 3 MAUI Architecture [32]

 Figure 3 provides a high-level view of the MAUI system

architecture. The MAUI runtime is always running in the

background monitoring the program execution. The profiler

instruments the program and collects measurements of the

program’s energy and data transfer requirements. Offload

decisions depend on three factors:

 The smart phone device’s energy consumption

characteristics;

 The program characteristics, such as the running time

and resource needs of individual methods

 The network characteristics of the wireless environment,

such as the bandwidth, latency, and packet loss.

 The MAUI profiler measures the device characteristics

at initialization time, and it continuously monitors the

program and network characteristics because these can often

change and a stale measurement may force MAUI to make

the wrong decision on whether a method should be

offloaded.

 The MAUI solver uses data collected by the MAUI

profiler as input to a global optimization problem that

determines which remotable methods should execute locally

and which should execute remotely. The solver’s goal is to

find a program partitioning strategy that minimizes the smart

phone’s energy consumption, subject to latency constraints.

 The client and server side proxies handle the data and

state transfer between the client and server. Additionally, the

MAUI controller present at the server handles authentication

and resource allocation for incoming requests.

 In addition to the above-mentioned architecture, MAUI

also utilizes some optimized programming techniques to

minimize the overhead of data transfers between the server

and client. For example, during execution at server, instead

of sending the whole data to the server every single time, it

only sends the difference from previous values (called

deltas). The results from the server are also sent back in the

same format. This approach reduces the amount of

communication required resulting in additional energy

saving.

 Due to the implementation of these techniques, MAUI

shows extraordinary results practically. The following

figures (figure 4 and 5[32]) display some of the results in

terms of energy and execution times.

Fig. 4 Energy consumption comparison [32]

Fig. 5 Execution time comparison [32]

Bahria University Journal of Information & Communication Technologies Vol. 10, Special Issue, September 2017

Page 20 ISSN – 1999-4974

TABLE 1. A Comparison of Different Frameworks

Paper Decision Making Parameters

Considered

Strengths Weaknesses

CloneCloud

[33]

Semi-dynamic code

partitioning

Computation

requirement, available

bandwidth

 Offloaded tasks keep executing even

if phone is turned off.

 Updated sent in the form of deltas.

 Resource rich server.

 Mobile device's clone is present at the

cloud server, large hop distances and

connectivity issues can introduce

delays between updates.

Cloudlets

[40]

Dynamically,

depending on network

conditions.

Throughput and

Latency
 Peer to peer network reduces latency.

 Outperforms cloud based approach

for up-to 2 hops.

 Can fall back to use the cloud server

if no cloudlets available nearby.

 Cloudlets usually less resource rich than

cloud servers.

 Moving virtual machines between

cloudlets is an extra overhead.



MOMCC

[35]

Developer specified

code partitioning,

governed by service

provider.

Available hosts

fulfilling the minimum

requirements.

 Easier to develop.

 Lower latencies.

 Drains batteries of host devices.

 Multiple possible security issues.

 Requires constant monitoring from the

service providers.

MAUI [32] Dynamically through

MAUI profiler

The device's energy

consumption

characteristics.

Running time and

required resources of

individual methods.

Network

characteristics.

 Updates sent in the form of deltas.

 VM running on cloud in parallel to

the mobile device.

 Only offloads if it results in energy

conservation and faster execution.

 Performs a lot better than previous

approaches.

 Performance drops at higher latencies.

 High overhead due to continuous

profiling

III. ENABLING TECHNOLOGIES

This section describes some of the enabling technologies

for the mobile computation offloading environments. The

introduction of these technologies has made it possible for

code offloading to be realized by offering improvements in

both architecture and infrastructure. The major factors

affecting this are advancements in wireless network

architectures, cloud computing and virtualization. Here we

describe these briefly and analyze how these have helped

improve code offloading. However, these two are not the only

factors and only represent the authors’ point of view.

A. Wireless networks and mobile agents

Until the late 90s, mobile networks did not have much

speed and the communication was full of errors and had heavy

losses. However, with the introduction of new technologies

(3G, Wi-Fi etc.), the problem with speed is pretty much solved

and with the introduction of even faster network technologies

like 4G, speeds are expected to become even faster. These

improvements spurred many research activities on mobile

computing, including mobile agents.

Mobile agents are autonomous programs that can control

their movement from machine to machine in a heterogeneous

network. Mobile Agent infrastructures work to remove the

platform dependence while working in a mobile environment.

They usually make use of platform independent technologies

like XML or Java [12,13,18,19]. All these technologies focus

on migrating computation for mobile devices, network

connectivity, and developing platform independent

applications.

B. Virtualization and cloud computing

Virtualization is a very old technology initially introduced

by IBM as a means to manage mainframe computers and their

usage [38] but was soon forgotten due to the introduction of

cheaper and smaller x86 machines [39]. However, these x86

machines also come with problems like underutilization,

operational costs and security risks. During the last decade,

virtualization has re-emerged as a solution to all these

problems. Virtualization provides solutions to all these

problems by running multiple operating systems on a single

machine simultaneously, which are concurrent but totally

isolated from each other. Many different kinds of virtual

machines can be created on a single machine making it highly

scalable.

Cloud computing takes the concept of virtualization to a

whole new level by providing users with instances of virtual

machines on ‘lease’ whose number can be increased or

decreased according to the user’s requirements. These cloud-

computing environments can be used very effectively for the

purpose of code offloading due to the services and ease of use

they provide for the developers and how they are already

optimized for dynamic changes in network and bandwidth

utilization.

IV. DISCUSSION

 The major aim of this paper is to present the major

research that has been done in the field of code offloading and

to evaluate if code offloading (in its current form) feasible in

the industry. Keeping table 1 in mind, following are some of

the major areas of concern we have identified.

Bahria University Journal of Information & Communication Technologies Vol. 10, Special Issue, September 2017

Page 21 ISSN – 1999-4974

A. Lack of Infrastructure

 The biggest obstacle in adapting code offloading is the

limited infrastructure present in the industry today. Code

offloading is viable only in conditions where the server (the

processing unit to which the code is offloaded) is very near

the client. As the number of hops between the client and the

server increase, the efficiency of code offloading decreases.

 In addition, in the case of VM based code offloading it is

assumed that the server would have the necessary

software/hardware specifications to successfully run the code

in the VM. To achieve in the industry (on a wide scale) is very

difficult. The primary reason is the sheer number of VM’s that

are needed: iOS, Android, Windows Mobile and the sheer

versions of each platform.

B. High Speed Connectivity

 As we have demonstrated above, the power consumption

is inversely proportional to the available bandwidth.

Bandwidth available over data networks (3G, Edge, and

GPRS) is not sufficient for optimal code offloading as the

energy conserved by offloading code is offset by energy

consumed by data transfer.

 To make code-offloading energy efficient we would need

data networks, which are very fast (near the speeds of Wi-Fi).

C. Lack of Development Technologies

 In code offloading a lot of code is being executed in

parallel on both the server and the client, also at the end of

each execution cycle the states/values of both client and server

need to be synchronized together. This presents another

challenge: the lack of development tools to help in the

development and debugging such parallel executions.

 By default, all programmers program their code to run

sequentially. Even though parallel processing is common

these days, most programming languages are still sequential.

The major reason is the difficulty in debugging

 The same is the problem is with code offloading. Today

we lack the development tools to develop such applications

where code is offloading automatically, run in parallel, and

lack the ability to debug it thoroughly.

D. Subnet Switching

 A major problem with all the current implementations of

code offloading is how the state of the server is transferred

from one cell to the next. This is especially true in cases where

the server is coupled very closely with the cell in which the

client currently is.

 As the user moves from one node to the next, its

connection to the server is broken. If the server remains at the

same node, then the hops between it and the client increase:

thus, decreasing the performance and benefits of code

offloading. One way to overcome this is that the server moves

with the client to next the code. Here the problem is how

would the server know to which node it has to shift to, and

how would it transfer it state.

V. CONCLUSION AND FUTURE WORK

 As we have described above, code offloading in its

current state is not ready to be adapted by the industry on a

wide scale. However, there have been cases in the recent

history where industry has adapted code offloading quite

successfully. The industry adapted the traditional

client/server model into code offloading quite successfully

and some of the examples are Siri (a digital assistant

provided by Apple in its flagship product: iPhone), Shazam

(a song recognizing software). In both these cases the

programmers used the traditional client/server model to

offload parts of the program (such as speech recognition) to

the server.

 In order to be able to successfully adapt code

offloading on a wide scale, the following points need to be

addressed in further studies:

1. How to switch between nodes more efficiently?

2. Improving the development technologies.

3. How to offload code more reliably and when is the

ideal time to offload code?

REFERENCES

[1] R. A. Powers. Batteries for low power electronics.Proceedings

of the IEEE, 83:687–693, April 1995.

[2] CNN.com, ―Battery Life Concerns Mobile Users,‖ 23 Sept.

2005.

[3] J. Paczkowski, ―Iphone Owners Would Like to Replace

Battery,‖ All Things Digital, 21 Aug. 2009.

[4] Kumar, Karthik et al. "A Survey of Computation Offloading

for Mobile Systems." Mobile networks and Applications

(2012): 1-12.

[5] Hong YJ, Kumar K, Lu YH (2009) Energy efficient content

based image retrieval for mobile systems. In: International

symposium on circuits and systems, pp 1673–1676

[6] Nimmagadda Y, Kumar K, Lu Y-H, Lee CSG (2010) Realtime

moving object recognition and tracking using computation

offloading. In: IEEE international conference on intelligent

robots and systems, pp 2449–2455

[7] Ou S, Yang K, Liotta A, Hu L (2007) Performance analysis of

offloading systems in mobile wireless environments. In: IEEE

international conference on communications, pp 1821–1806

[8] Xian C, Lu Y-H, Li Z (2007) Adaptive computation offloading

for energy conservation on battery-powered systems. In:

International conference on parallel and distributed systems,

pp 1–8

[9] Wolski R, Gurun S, Krintz C, Nurmi D (2008) Using

bandwidth data to make computation offloading decisions. In:

IEEE international symposium on parallel and distributed

processing, pp 1–8

[10] Huerta-Canepa G, Lee D (2008) An adaptable application

offloading scheme based on application behavior. In:

International conference on advanced information networking

and applications - workshops, pp 387–392

[11] Forman GH, Zahorjan J (1994) The challenges of mobile

computing. Computer 27(4):38–47

[12] Joseph AD, de Lespinasse AF, Tauber JA, Gifford DK,

KaashoekMF (1995) Rover: a toolkit for mobile information

access. In: ACM symposium on operating systems principles,

pp 156–171

Bahria University Journal of Information & Communication Technologies Vol. 10, Special Issue, September 2017

Page 22 ISSN – 1999-4974

[13] Kotz D, Gray R, Nog S, Rus D, Chawla S, Cybenko G (1997)

Agent Tcl: targeting the needs of mobile computers. IEEE

Internet Comput 1(4):58–67

[14] Noble BD, Satyanarayanan M (1999) Experience with

adaptive mobile applications in Odyssey. Mobile NetwAppl

4(4):245–254

[15] Perkins CE (1996) Handling multimedia data for mobile

computers. In: Computer software and applications

conference,pp 147–148

[16] Qi M (1997) Resource conservation in a mobile transaction

system. IEEE T Comput 46:3:299–311

[17] White JE (1997) Mobile agents. In: Software agents (MIT

Press), pp 437–472

[18] Wong D, Paciorek N, Moore D (1999) Java-based mobile

agents. Commun ACM 42(3):92–102

[19] Wong D, Paciorek N, Walsh T, DiCelie J, Young M, Peet B

(1997) Concordia: an infrastructure for collaborating mobile

agents. In: International workshop on mobile agents, pp 86–97

[20] O’Hara KJ, Nathuji R, Raj H, Schwan K, Balch T (2006)

Autopower: toward energy-aware software systems for

distributed mobile robots. In: IEEE international conference on

robotics and automation, pp 2757–2762

[21] Wang C, Li Z (2004) Parametric analysis for adaptive

computation offloading. In: ACM SIGPLAN conference on

programming language design and implementation, pp 119–

130

[22] Rong P, Pedram M (2003) Extending the lifetime of a network

of battery-powered mobile devices by remote processing: a

markovian decision-based approach. In: Conference on design

automation, pp 906–911

[23] Li Z, Wang C, Xu R (2002) Task allocation for distributed

multimedia processing on wirelessly networked handheld

devices. In: Parallel and distributed processing symposium, pp

79–84

[24] Li Z, Wang C, Xu R (2001) Computation offloading to save

energy on handheld devices: a partition scheme. In:

International conference on compilers, architecture, and

synthesis for embedded systems, pp 238–246

[25] Gu X, Nahrstedt K, Messer A, Greenberg I, Milojicic D (2003)

Adaptive offloading inference for delivering applications in

pervasive computing environments. In: IEEE international

conference on pervasive computing and communications, pp

107–114

[26] Goyal S, Carter J (2004) A lightweight secure cyber foraging

infrastructure for resource-constrained devices. In: Mobile

computing systems and applications, pp 184–195

[27] Ou S, Yang K, Hu L (2007) Cross: a combined routing and

surrogate selection algorithm for pervasive service offloading

in mobile ad hoc environments. In: IEEE global

telecommunications conference, pp 720–725

[28] Rim H, Kim S, Kim Y, Han H (2006) Transparent method

offloading for slim execution. In: International symposium on

wireless pervasive computing, pp 1–6

[29] Seshasayee B, Nathuji R, Schwan K (2007) Energy aware

mobile service overlays: cooperative dynamic power

management in distributive systems. In: International

conference on automatic computing, pp 6–12

[30] Weinsberg Y, Dolev D, Wyckoff P, Anker T (2007)

Accelerating distributed computing applications using a

network offloading framework. In: IEEE international parallel

and distributed processing symposium, pp 1–10

[31] Yang K, Ou S, Chen H-H (2008) On effective offloading

services for resource-constrained mobile devices running

heavier mobile internet applications. IEEE communications

magazine 46(1):56–63

[32] Cuervo, Eduardo et al. "MAUI: making smartphones last

longer with code offload." Proceedings of the 8th international

conference on Mobile systems, applications, and services 15

Jun. 2010: 49-62.

[33] Chun, Byung-Gon et al. "Clonecloud: elastic execution

between mobile device and cloud." Proceedings of the sixth

conference on Computer systems 10 Apr. 2011: 301-314.

[34] Satyanarayanan, Mahadev et al. "The case for vm-based

cloudlets in mobile computing." Pervasive Computing, IEEE

8.4 (2009): 14-23.

[35] Abolfazli, Saeid et al. "MOMCC: Market-Oriented

Architecture for Mobile~ Cloud~ Computing Based on

Service~ Oriented~ Architecture." arXiv preprint

arXiv:1206.6209 (2012).

[36] Cidon, Asaf et al. "MARS: adaptive remote execution for

multi-threaded mobile devices." Proceedings of the 3rd ACM

SOSP Workshop on Networking, Systems, and Applications on

Mobile Handhelds 23 Oct. 2011: 1.

[37] Kumar K, Lu YH (2010) Cloud computing for mobile users:

can offloading computation save energy? IEEE Comput

43(4):51–56

[38] Goldberg RP (1974) Survey of virtual machine

research.IEEEComput 7(6):34–45

[39] Rosenblum M, Garfinkel T (2005) Virtual machine monitors:

current technology and future trends. IEEE Comput 38(5):39–

47

[40] DebessayFesehaye, Yunlong Gao, Klara Nahrstedt Impact of

Cloudlets on Interactive Mobile Cloud Applications

