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Recent Advancements on Drivable Free Space Estimation Using 

Monocular Vision 
 

Yasir Amir, Haroon Rasheed, Umair Shahid 

 
 Abstract – This paper presents a overview on recent work 

on drivable free space estimation with emphasis on monocular 

vision. Yao et. al. proposed an inference in MRF using various 

cues based on appearance, edges, spatial and temporal 

smoothness. Wolcott et. al. added more cues based on perceived 

motion using optical flow. While Levi et. al. proposed a new 

column wise regression approach using convolutional neural 

networks and stixels. All the techniques reviewed in this paper 

have large processing time, thus seriously limiting their 

practical application. 
 

Index Term – drivable free space, stixel, monocular vision. 
 

I. INTRODUCTION  

 
Motor vehicle accidents (MVA) are caused by driver 

inattention and poor judgment. Out of these accidents in the 

U.S 31% of MVAs are due to rear-end collisions, mostly 

when a front vehicle stops or slows down suddenly without 

giving the trailing vehicles any warning or very little time to 

react. Intelligent driver systems have proved to lessen the 

severity and frequency of accidents [6]. MVA prediction 

using computer vision is an important, challenging and 

emerging field, with a lot of potential for research. 
In addition to MVA prediction, autonomous driving 

systems rely on robust techniques for their safe operation. 

Obstacle detection is the fundamental step in MVA 

prediction as well as autonomous driving systems. Dense 

laser scanners have been very successfully used in this 

respect. Stereo vision is also suitable technology however 

our focus here is on monocular camera due to cost and 

package size. Related to MVAs and autonomous driving, the 

most important question which need to be addressed is “what 

is the most critical information necessary to avoid obstacle” 

(and therefore accident). The most critical information is the 

drivable free space that can be immediately reached without 

collision. Monocular camera vision offers a cost effective 

solution for this problem. 

 
A) Autonomous driving and obstacle detection 

Some notable work in relation to autonomous driving 

and obstacle detection was done by Prof. Amnon Shahua of 

Hebrew University and co-founder of Mobileye. Later on a 

few important contributions in this respect have been done 

by Jian Yao et. al. of Torronto University [24], Badino et. al. 

[17], Benenson et. al. [18], Levi et. al. [28] besides many 

others. 

Work of Prof. Shashua et. al.: 
In 2003, they proposed a vision based adaptive cruise 

control system (ACC) using single camera, where they 

showed method of calculating range and range rate and also 

showed that how image geometry effected these quantities. 

The distance between the camera mounted vehicle and the 

target vehicle, Z was as Z =fH/y with f being focal length of 
camera, y being height of vehicle in image and H being the 

height. This equation was derived on assumption that the 

horizontal line passing through the camera is parallel to road 

surface, which off course is not the case in real world scenarios. 

In addition there is vibration in camera due to vehicle motion, 

which must also be considered in analysis. Therefore the error 

in range Zerr due to error of n pixels in location of location of 

contact point is Zerr = Zn-Z which is: 
 

 

 

 
It was observed that typically n is nearly 1 and fH >> nZ 

therefore Zerr=nZ2 /(fH). This also shows error increases 

quadratically with distance. The percentage error in depth is 

given by Zerr /Z*100. 
 

Example: Let us consider an example of a 640x480 

image (w=640) with a horizontal field of view of fov=47 

degrees gives a focal length in pixels 
 

f=(fmm/sensor-width)w=(w/2)/tan(fov/2), 

f=(640*0.5)/tan(47*0.5*π/180) 
 

which rounds off to 736pixels. I we suppose the camera 

height is H=1.2m. With 1 pixel error which is error of 5% in 

depth is expected at a distance of 
 

Zerr=n Z2 /(fH) 


 Z=(Zerr/Z)fH=0.05*736*1.2 =44.16m. 

 
An error of 5% at 44m is quite small as compared to 

human driver’s error. At a distance of 100m the error would 

be (Zerr/Z)*100=nZ /(fH)*100=11.32%. Therefore ACC 

systems are quite practical. They also suggested method of 

determining bounds on accuracy to determine steps which 

must be taken to improve system performance. The system 

was tested on highways with promising results [1]. 
A vision based forward collision warning system was 

presented by Prof. Shashua et. al. where an algorithm was 

proposed to calculate time to contact (TTC) and possible 

course directly from position and size of vehicle. This 

information was obtained directly from image without 3-D 

representations of scene. Collision avoidance tests were 
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performed on test tracks using Mobileye system [2]. In [5] 

the authors described a system which covers three major 

capabilities, namely forward collision, headway monitoring/ 

warning and lane departure. This paper not only described 

warning features but also sets rule for visual and acoustic 

human machine interface. This system was installed on 

commercial fleet and passenger vehicles and its results were 

quite promising. 
The automotive industry requirements are strenuous and 

often contradicting and the computer vision systems should be 

able to meet those requirements. The algorithms are expected 

to have substantial computing power to function dependably 

in real-time applications under a wide range of day-night and 

weather conditions, using automotive industry qualified 

parts. These parts must be able to have long life and ability 

to with stand harsh operating conditions. Yet the cost must 

be kept low along with small system size and low power 

consumption. In order to come up to the challenge, almost all 

of these crucial requirements are met by a system EyeQ 

which was developed by Mobileye, which is a complete 

system on a chip, capable of supporting most of CV 

algorithms used in variety of related applications such as 

vehicle detection, lane and pedestrian detection etc. This 

system is described in detail in [5] where a process of 

designing an ASIC to support CV algorithms is also 

presented. The chip supported, lane detection, pedestrian and 

vehicle detection related applications. Novel algorithms may 

be developed for the chip which can exploit its advanced 

computational power. This chip contains two ARM 

processors (CPU) in addition to four vision computing 

engines (VCE). One ARM CPU is used for implementing 

algorithms while the other for communication to the vehicle 

and general IO. 
As part of the 2006 DARPA Grand Challenge, Prof. 

Shashau and team, developed and tested a system in which they 

developed a real time system for “finding and tracking” 

amorphous paths in off-road conditions. They combined 

geometric projection with learning approach for identifying 

drivable regions in scene that are familiar. They used geometric 

projections to deduce yaw and pitch angles. Using 16 Walsh-

Hadamard 4x4 binary kernels they performed texture analysis 

to segment out path regions from non-path regions. They used 

learning by example principle using boundary based 

components, which look for path bounding lines. Their 

combined approach made their vehicle capable of finding path 

even when vehicle is positioned out of path, a situation which is 

not frequently encountered by human drivers but by 

autonomous systems. [3] 
An essential part of the collision avoidance system in 

urban scenarios is pedestrian detection. In another paper 

Prof. Shashua et. al. described a pedestrian detection system 

using monocular camera. They proposed an approach of 

single frame classification based on a novel technique which 

breaks down class variability by repeatedly training a set 

series of simple classifiers on clusters of training set. The 

system was tested and its performance was evaluated only 

for day time and single weather conditions [4]. 
 
B) Drivable free space Estimation 

Drivable free space may be understood as the space that be 

immediately reached by (autonomous) vehicle without 

collision. Up till 2015, self-driving cars typically used Light 

Detection and Ranging (LIDAR) scanning in every direction to 

determine drivable free space, Google driverless car is one such 

example. LIDAR sensors provide plenty of useful information 

including point appearance. Without using LIDAR and relying 

only on camera to identify ground plane, is a challenging task 

[25]. Badino et. al. showed that stereo camera could be used to 

estimate the immediate drivable free space to replace LIDAR 

[7]. With LIDAR and/or stereo camera the computation of 

drivable free space becomes quite easy; however this is a 

nontrivial task with a single monocular camera. Most of the 

related previous work ([8],[9],[10],[11],[12] and [13]) in this 

respect used Laser range finder along with GPS based 

positioning. 
In 1987, A. Elfes used the idea of “occupancy grid” [14], 

which refers to 2 dimensional grid where every cell models 

the occupancy evidence of environment. Occupancy grid is 

normally estimated via Laser range finders or ultrasonic 

sensors [15]. 
Badino et. al. used the notion of Stixel world [17] to 

compute free space and height of objects. Stixel world is the 

simplified model of the world using ground plane and a set of 

vertical sticks on ground representing the obstacles. According 

to them, there were several object descriptors like particles, 

quadrics, quadtrees, octtrees, patchlets or surfels that partly 

fulfilled the requirements but they did not attain the level of 

compactness they were striving for. Therefore they proposed a 

scheme to represent the 3-D environment in front of vehicle by 

a set of rectangular sticks or “stixels”. 
Each stixel stands vertically on ground, has a certain height 

and has a 3-D position with respect to the camera. The idea 

is that each stixel defines the border of free space thus 

approximating the boundaries of obstacles. A scene from an 

image with a width of 800 pixels, for instance, can be 

represented by 800/4=200 stixels, if width of each stixel is 

set to 4 pixels. In this way, this scheme compactly encloses 

two curves one encloses the drivable free space and runs on 

ground plane and the other encloses heights of all vertical 

obstacles which are located at the border line of free space. 

H. Hirschmuller used semi-global stereo matching to 

compute the stixel world [16]. In 2011, R. Benenson et. al. 

showed that stixel estimation can be done without using 

stereo depth map.[18] 
Recently, in [26] Semantic Stixels a new vision-based 

scene model which is specifically focused on autonomous 

driving, was presented. Using stixels as primitive elements, 

the model figures out the geometric as well as semantic 

outline of a scene, providing a rich but compact 

generalization of both cues. For semantics they make use of 

a current deep learning-based scene labeling approach which 

provides an object class label for each pixel. They used stereo 

vision to derive pixel level disparity maps which are used to 

embed geometric information into the model. Their results 

show that the joint handling of the two cues on Stixel level 

produces a very compact representation yet at the same time 

maintaining correctness close to the two individual pixel 

level input data sources. Their framework was comparable to 

the related approaches in terms of real time operation and 

computational costs. 
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Hoiem et. al. had shown in 2005, that is quite reliably 

possible to classify a given pixel in image into sky, ground 

or building [22]. Recently, S. Achar et. al., S. Scherer et. al. 

and A. M. Neto et. al. proposed free space estimation by 

using Binary Classification. However their understanding of 

free space required space behind obstacles as a result 

efficient and exact inference is not possible ([19], [20] and 

[21]). Felzenszwalb and Veksler [23] proposed a scheme of 

modeling a scene using two horizontal curves that divide 

image into three regions namely top, middle and bottom. 

Although exact inference is possible, complexity of scheme 

does not render it suitable for real time applications [24]. 
 
C) Free space estimation using monocular camera 
 
Work of J. Yao et. al. : 

In this approach the problem was modeled in such a way 

that in an image with width=w and height=h, ‘w’ discrete 

variables (yi) were taken, where yi ϵ {1,..,h} , set of h discrete 

labels. It was also suggested that the states of yi could be 

further restricted since yi could never be above horizon. A 

simple way of calculating a bound for horizon line using the 

training images was suggested which was used to restrict the 

labels in inference procedure. A 1-D chain graph G={V,E} 

with vertices V = {1,…,w} was proposed, with edges (i,i+1) 

ϵ E and i ϵ {1,..,w-1}. The features from It and It-1 were used 
to calculate curve for image It. And an energy function was 

defined as: 
 

 

 
The first term is unary which uses edges, appearance and 

temporal information, while the pair wise potential (second 

term) encode the spatial information. The parameters for 

energy function are w={wu, wp}. The parameters were 

learned using structure prediction. The uninary potentials are 

explained next. 
The first potential focuses on appearance, where the 

authors used two Gaussian Mixture Models (GMM) one for 

each road and sea. Each GMM had five components to model 

the probability of each pixel to be foreground or background. 

The parameters were learned using Expectation 

Maximization (EM). Location prior was used to enforce 

pixels that are always road. They used training data to 

determine this region and formulated a potential that focuses 

on the entropy of the distribution in patched around the 

labels/ pixels of interest. Entropy is calculated in a patch 

around pixel located at (i,j), in terms of distribution of road 

or non road pixels, by 

φappearance (yi=k) = H(i,k)Σh j=k H(i,j) 

 
Entropy is supposed to be high close to boundary of 

road/ non-road pixels. They used a cumulative sum that 

favors pixels that are closer to the moving vehicle and those 

with non zero entropy, so as to determine a curve that passes 

through boundary between nearest series of obstacles and 

road. 

The second potential focuses on edges where Canny 

edge detector was used to detect edges. This assists the the 

curve being looked for, to get lined up with the natural 

outline (contour) between free space and obstacles. There 

would be many edges in the image but the appropriate or the 

required ones are those that are located at the bottom of 

image closer to camera. This potential as formulated by the 

authors is: 

φedge (yi=k) = e(i,k)Σh j=k e(i,j) with 

e(i,j) = 1 if an edge is located at pixel at (i,j). 

 
 The third potential focuses on homography. For a pixel 

p(i,j) be labeled in image It and corresponding pixel p(i’,j’) in It-

1 the authors used homography to impose smoothness across 

images while maintaining 1-D chain graph during inference. A 

homography matrix was calculated using ground plane. In this 

way a one-to-one mapping between pixels on ground in both 

images (It-1 and It) could be obtained which also provided 

mapping of curve representing free space. The mapping is given 

by following homography mapping: 
 

i’  i 

j’ = H(t,t-1) j 

1  1 

 
 Here H(.) defines the homography matrix. The 

homography potential is defined as: 
 

φhomography (yi=j) = φu (yi’=j’ ) 
 

Where φu (yi’=j’ ) is the unary potential in previous 

image and with yi’=j’ computed from previously given 

mapping. Homography was calculated in a RANSAC frame 

work using SIFT correspondences during the experimental 

testing. 
The second term of energy function which is pair-wise, 

focuses on the spatial smoothness. It was noted that curve is 

smooth in absence of obstacles. In presence of obstacles, 

which happens in a few image columns only, the curve would 

be non-smooth. They employed a truncated quadratic penalty 

to reinforce the curve to be smooth. The potential is given 

by: 
The loss augmented inference could be solved using 

dynamic programming since the loss decomposes into unary 

potentials. 
 

 exp(-α(y - y 2 
) if |y - y |≤ T  

φp(yi, yj)= 
) 

 

 i j   i j 
 

        

 λ d    otherwise 
 

        

 
Work of Levi et. al.: 

In their paper [28], Levi et. al. used single color camera 

in contrast to the existing methods based on 3-D sensing. 

Their main contribution is that they reduced the problem to 

a column wise regression problem. The regression is then 
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solved using convolutional neural networks (CNN). For 

testing they used the KITTI dataset and they showed that 

their approach is far better than the rest. 
According to Levi et. al. since complete scene labelling 

(e.g road, sidewalk, building) is a tough task, they adopted a 

better approach using the concept of stixels and detecting a 

contact point (pixel) in the image columns that forms the 

border of obstacle and ground. Their approach is two step, 

where as a first step they divided the given frame into 

columns and solved the detection as a regression problem 

using CNN. This was termed as stixelnet. As a second step 

they improved results by imposing smoothness constraints 

and making use of interactions between neighboring 
columns. They introduced a loss function to train the neural 

network, which was based on “semi-discrete” representation of 

obstacle probability. Large quantities of labeled data are 

essential for training deep CNN. In order to fulfill this need they 

took advantage of laser scanners which eliminated the need for 

manual labeling however they further fine tuned the stixelnet by 

hand labeling. Their method proved to be even superior to stereo 

based approach using stixels. In the 
 “KITTI road segmentation challenge” their fine-tuned 

network was ranked second best, although it did not suitably 

model all cases. 
Stixelnet consists of five layers [28] where the first two 

layers are fully convolution with 64 filters in first layer and 200 

kernels in the second layer, while the layers from three to five 

are fully connected with 1024, 2048 and 50 neurons, 

respectively. The network receives a vertical stripe (Is) of the 

image. The stripe has width w, height h and the colors for each 

pixel with dimensions (w,h,3). In this paper they took (w,h,3)= 

(24,370,3). Taking zero as the first row from top and h as the 

bottom, the problem is finding in Is the vertical height y of the 

bottom of the closest obstacle called the obstacle position with 

y lies in interval [hmin,h], where hmin represents the possible row 

of horizon (here hmin =140). The output of the network is 

probability distribution over the interval [hmin,h] with P(y) = 

probability that obstacle in Is is at y. It was observed that color 

images gave better results as compared to gray scale while 

temporal information did not give any noteworthy performance 

advantage. 
The first two layers are convolutional layers. The first 

layer convolves the input image of size 24x370x3 with 64 

filters at each pixel position. The size of each filter is size 

11x5x3. The second convolutional layer has 200 kernels of 

size 5x3x64. Maximum is then computed over regions which 

have no overlap between pooled regions by the max-pooling 

at the output of each layer with sizes 4x3 for the second layer 

and 8x4 for the first layer. 
They solved the obstacle detection problem in two 

stages. In the first stage stixelnet provided the guess of road 

limit and obstacle and in the second stage global refinement 

was done using Conditional Random Field so as to get a 

globally consistent estimation. In CRF they optimized a 

potential (ref. to [28]) where the unary potential is the 

probability of obstacle position determined by stixelnet, 

while the pair-wise potential penalized discontinuities. The 

inference can be solved using Viterbi-Algorithm. 
An important aspect of the problem is to find if a given 

pixel is road or non-road. In road segmentation the first two 

stages are same as in object detection while the third stage 

performs graph-cut segmentation on image in order to 

achieve higher accuracy. 
For experiments they used KITTI dataset with 56 on 

road sequences consisting of a couple of hundreds of frames. 

About 6000 training images and 800 testing images were 

used. Their experiments show promising results. 
The work of Wolcott et. al. : 

Wolcot et. al. showed in [25] that a monocular grayscale 

camera could be used to partition a given image into disjoint sets 

of obstacles and ground plane. Their approach is close to [24] 

however they took advantage of perceived motion from 

optical flow in stream of images. In their work they focused 

on partitioning a stream of image frames into obstacles and 

prior map. They exploited a “textured prior map” to obtain 

“appearance models” and “optical flow likelihoods” which 

could then be integrated into an MRF frame-work. The prior 

map allowed evaluating ground likelihood by 

circumstancing belief on the expected appearance from the 

prior map. In contrast to [22], Wolcott et.al. introduced some 

new potentials such as “optical flow potential” besides 

additional potentials such as LIDAR, recursive potentials 

etc. in an effort to exploit perceived motion along with 

appearance. Their scheme could be executed at a frame rate 

of up to 8 frames per second yielding a processing time in 

range of 0.125-0.21 seconds per frame. Their proposed 

scheme was tested on a data set that had non-uniform lighting 

conditions in a challenging urban scenario. Experimental 

results showed improved robustness. As a future work they 

suggested that in order to segment objects lying above image 

partition, extracted optical flow vectors may be used. 
 

II. CONCLUSION 
  

 The techniques and methodologies discussed in this paper 

focus on monocular vision where the problem is quite 

challenging from computer vision perspective. Most of the 

techniques reviewed here, have large processing time thus 

seriously limiting their practical applications. The processing 

time of Yao et. al. is 0.1s per frame. Although Wolcott et. al. 

used more cues and gray scaled image their processing time was 

not better than former. Improving processing time is an 

important research area with a potential for a lot of work. 
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