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Abstract—A two-factor revocable authentication approach, 

combining user-specific pseudo-random bit sequence with 
biometrics is presented. Through the mixing process, a distinct 
binary code, coined as BioBit, is formed. This provides a 
protection layer against biometrics fabrication because the 
system can cancel the compromised and reacquire a new one 
via bits replacement. BioBit delivers lower error rate as 
compared to sole biometrics when the genuine token is used by 
the authorized user. There are two identity theft scenarios may 
be raised: 1. stolen-biometrics: an imposter possesses 
intercepted biometrics data to be considered genuine; 2. 
stolen-token: an imposter has access genuine token and used it 
to claim himself as the genuine user. BioBit scheme shows the 
impressive performance (EER=0.001% and EER=0.002% 
tested on ORL and FERET datasets) in case 1. For the 
stolen-token case, this approach attains EER=1.28% and 
EER=1.36% on ORL and FERET datasets. 
 

Index Terms—Face recognition, Cancelable biometrics, 
Two-factor authentication, XOR operation. 
 

I. INTRODUCTION 
Password- and token-based authentications are the most 
common forms of personal recognition today. However, 
these approaches are insufficient in contemporary security 
requirements. Passwords can be forgotten and shared. They 
are even easy to guess based on social engineering methods 
or broken by dictionary attacks. Besides, most users have the 
tendency to use the same password for different applications 
[1]. If the password is compromised, it may open many 
doors. On the other hand, the shortcomings for token are that 
it can be lost, stolen or mislaid (for example, left at home). In 
addition, passwords and tokens do not offer defense against 
repudiation [2]. User can repudiate his/ her access by 
claiming that the password or token is shared with a friend. 
Thus, there is no way to determine who the actual user is.  

Biometric characteristics, such as face, fingerprints, 
palmprints, iris and etc., are the intrinsic aspects of a human 
and uniquely associated with the person. Biometrics 
characteristics cannot be lost or forgotten. They are 
extremely difficult to duplicate, share and distribute. 
Furthermore, biometrics-based system solves the problem of 
repudiation as it demands the person that to be identified to 
be physically present at the point of authentication [3]. 
However, biometrics cannot be easily revoked. If a 
biometrics is compromised, it is compromised forever and 
rendered unusable. This concern is exacerbated by the fact 
that a person has limited numbers of biometrics 
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characteristics. Users may run out of biometrics for 
authentication if their biometrics characteristics keep being 
compromised and rendered unusable. Different applications 
might use the same biometric, an adversary who acquires a 
person’s biometrics in one application could also be used for 
others. 

Some researchers like Bolle et al. [4], Davida et al. [5] and 
Kevenaar et al. [6] have introduced the terms cancelable 
biometrics and private biometrics to rectify this issue. These 
terms are used to denote biometrics data that can be 
cancelled and replaced, as well as is unique to every 
application. Bolle et al. proposed that a high order 
polynomial function can be used as a transform function for 
fingerprint minutiae features. The cancelability issue of 
biometrics was also addressed by Andrew et al. [7]. They 
introduced the freshness into the authenticator via a 
randomized token. The revocation process is essentially the 
inner-product of a tokenized pseudo-random pattern and the 
biometrics information iteratively. Most recently, Savvides 
et al. [8] proposed a cancelable biometrics scheme, known 
as cancelable minimum average correlation energy (MACE) 
filters, which encrypted the training images used to 
synthesize the correlation filter for biometrics 
authentication. They showed that different templates can be 
obtained from the same biometrics by varying the random 
convolution kernels thus enabling the cancelability of the 
templates. They demonstrated that convolving the training 
images with any random convolution kernel prior to 
building the biometric filter does not change the resulting 
correlation output peak-to-side lobe ratios, thus preserving 
the authentication performance.  

This paper proposes a revocable face authentication 
approach which combines user-specific tokenized 
pseudo-random bit sequence (TRBs) with biometrics data to 
generate a distinct binary code per person, coined as BioBit. 
BioBit inspires a two-factor face authentication mechanism 
by introducing the traditional biometrics recognition system 
a secondary authentication factor – a private token that 
constitutes the user TRBs. A two-factor authentication 
system has the advantage of avoiding any attack with single 
factor – attempting with a stolen token or a pre-captured face 
that works with the traditional system. This is the typical 
attack to the traditional token-based system where a hacker 
intrudes the system with a stolen or dictionary-generated 
password. BioBit fortifies the security level of the system 
where a legitimate access requires a valid token and a 
genuine face’s feature. Besides, the utilization of TRBs also 
provides the revocation capability since TRBs is replaceable 
via token replacement. Without the presence of TRBs, sole 
biometrics suffers from irrevocable and privacy invasion 
issues, whilst sole token usage is susceptible to repudiation 
and stolen problems as discussed previously. We consider 
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the recognition performance of BioBit in three scenarios: 
when each legitimate user uses his own legitimate token for 
verification (legitimate token case); when a fraudulent 
verification is attempted using only intercepted biometrics 
data associated with the legitimate user, but without the 
associated token (stolen-biometrics case) and when a 
legitimate token is stolen and used by an imposter to claim as 
the legitimate user (known as stolen-token case). We show 
that the proposed scheme outperforms the sole biometrics 
and survives in two unfavorable attacks – stolen token and 
stolen biometrics scenarios. 

II. THE OVERVIEW OF BIOBIT SCHEME 
The overview of the proposed approach is depicted in Fig. 1. 
Firstly, a compact facial vector {x} is derived from a raw 
biometrics image {I} by using pseudo Zernike moment 
analysis. Through the moment analysis, the 
high-dimensional face data is transformed into a more 
compact feature vector representation. Note that pseudo 
Zernike moment analysis is just an example as a feature 
extractor used in this paper and it is possible to apply any 
face feature extractor, such as Eigenfaces, Fisherfaces, 
Discrete Cosine Transform and etc., in the proposed 
approach. Secondly, a bitstring generation mechanism- 
Chang’s Multi-bit Scheme (MbS) [9] is utilized to derive a 
stable bitstring {y} from the moment features. According to 
the degree of distingushability, each moment feature in the 
feature vector may contribute more than one bit to the 
bitstream generation. Thereby, the bitstring space is 
broadened in order to obstruct imposters from exhaustive 
search for the correct bitstring from the bitstring space. 
Lastly, a user-specific token-generated random bit sequence, 
TRBs, {r} is combined with {y} via XOR logic operation to 
eventually derive a binary code, coined as BioBit {B}. The 
utilization of r in BioBit computation promotes cancelable 
biometrics mechanism since the random bit is replaceable 
via token replacement.  

III. FEATURE GENERATION: PSEUDO ZERNIKE MOMENTS  
The two-dimensional pseudo Zernike moments of order p 
with repetition q of an image intensity function f(r,θ) are 
defined as [10][11] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. The block diagram of the proposed system 
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  In this study, the considered features are the magnitude of 
PZpq , { }pq,magx PZ= , due to their rotation invariant 

property; the phase information is omitted as the influence 
of phase information is rather insignificant especially when 
high order moments are included [11]. 

IV. STABLE BITSTRING GENERATION 
To generate stable face representation in binary bitstring, 
Multi-bit Scheme (MbS), proposed by Chang et al. [9], is 
employed. The features could only be considered for the 
formulation of bitstring if and only if its distance between 
the authentic mean and the global mean is larger than ka 
times of the authentic standard deviation [9][13]. Features 
that fall within a certain standard deviation from the genuine 
mean will be assigned multiple bits for the bitstring 
generation. Enlarged bitstring space hinders imposters from 
exhaustive search for a correct bitstring from the space. 

Let x be a vector representing the features extracted from 
a face image via pseudo Zernike moments. Based on the 
information of x, y of each face is generated by the following 
steps [9]: 

(1) Compute the left and right boundaries, LB and RB, 
respectively, for each feature: 

( )
( )

min ,

max ,

LB m k m kg g g a a a

RB m k m kg g g a a a

σ σ

σ σ

= − −

= + +
 

 where ma and σa are the mean and standard 
deviation of the authentic feature distribution, and  
mg and σg are those of global feature distribution. A 
suitable value is set to kg in order to cover almost 
100% of the global distribution and ka is used to 
control the range of authentic feature distribution 
[ ],a a a a a am k m kσ σ− +  to be specified as the 
authentic region. In our case, kg is set to 3, while ka 
is set to 0.3. 
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(2) Determine the number of segment with the same 
size as the authentic region in the ranges of (a) from 
LB to the left boundary of the authentic region, LBa, 
and (b) from the right boundary of the authentic 
region, RBa , to RB. 

The number of segment from LB to LBa is 

2
m k LBa a aLS

ka a

σ
σ

− −
=  segment(s) 

The number of segment from RBa to RB is 

2
RB m ka a aRS

ka a

σ
σ

− −
=  segment(s) 

Thus, there are LS+RS+1 segments in the range of [LB 
RB]. At least log2(LS+RS+1) bits are sufficient to specify 
each segment with a unique binary index. Please refer [9] for 
more detail. 

V. BIOBIT GENERATION AND ITS POSSIBLE ATTACKS 
In this stage, two authentication credentials are combined to 
generate a user-specific BioBit, B. The credentials are 
bitstring, y, and TRBs, r. r is computed based on a seed 
stored in a token microprocessor through a random bit 
generator. Same seed is used for both enrollment and 
verification processes to a same user, but is different among 
different users and different applications. Employment of 
random data, r, as one of the authentication credentials for 
BioBit generation enables the cancelability of the biometrics 
template and provides multiple application-specific 
verification templates from a same biometrics.  

Based on the y and r information, B is generated by the 
following steps: 

(1) Use token to generate a set of pseudo-random 
binary bits with the length of m, r = {rj | j = 1,…,m} 

(2) Compute B by coupling y and r via bit-wise 
XOR-logic operation, B = <r ⊕ y>. 

The decision is then done based on the hamming distance 
matching between the reference BioBit and input BioBit by 
referring to a preset threshold value. 

The abovementioned matching process is considered as 
legitimate token scenario. There are two possible attacks 
may occur in this scheme, namely stolen-biometrics and 
stolen-token attacks. For the stolen-biometrics case, we 
consider the scenario that an imposter manages to steal the 
genuine biometrics data with high quality and claims 
himself as the genuine user by taking the stolen biometrics 
data mixed with the imposter’s token. The stolen-token 
scenario occurs when the genuine token is stolen and 
presented by an impostor as the genuine token. 

However, we anticipate that the BioBit scheme still 
survives on these attacks based on the analysis below:  
Let rA the random number set that generated by the genuine 
user with his token and sealed with yEA (the enrolled 
biometric-derived bitstring representation A) and yTA (the 
test biometric-derived bitstring representation A) using 
XOR operation ( ⊕ ). The output of the mixing is denoted as 
B. Based on the unique property of XOR operation, i.e if X 
⊕ Y = Z then X ⊕ Z = Y or Y ⊕ Z = X, we have: 

Case 1- legitimate-token:  
Each genuine user uses his own biometric (yTi) and token (ri) 
, where i represents different person, to access the system. 
The matching of the provided identity and the claimed 
identity will generate genuine and imposter distributions. 

Genuine distribution is the scattering where each BioBit of 
the class is matched against all other BioBits in the same 
class; whereas, imposter distribution is the scattering where 
the BioBit of each class is matched against the BioBit of all 
the other classes.  
 
 Genuine distribution: 
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The genuine population should be peak at zero distance if 
and only if yEA  is exactly equal to yTA. However, practically, 
it is impossible to get such result due to the biometric’s 
inherent high degree of uncertainty, but near to zero distance 
is obtained. 
 
 Imposter distribution: 
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Since  and o ToA EA≠ ≠r r y y , the matching of BioBits of 
different classes in legitimate token case shifts the imposter 
distribution towards larger distance. 
   

Case 2- stolen-biometrics: 
An imposter o has stolen the biometric of a genuine user A 
and claimed himself as genuine A by using his token (ro) and 
the user A’s biometric (yTA).  
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The result of this case will be similar to the result of the 
tokenized random number matching, if and only if yEA  near 
to yTA. 
 

Case 3- stolen-token:    
An imposter o has stolen the token of a genuine user A and 
claimed himself as genuine A by using his biometric data 
(yTB) and the user A’s token (ro). 
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The result of this case will be similar to the result of the 

biometric-derived bitstring matching (MbS recognition 
performance).  

The above analysis can be validated by the experiments 
that will be done in section 6.0. 

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS 
The proposed method is evaluated on images taken from two 
different types of face databases, which are Olivetti (also 
known as ORL) face database and Face Recognition 
Technology (FERET) face database (FERET). In ORL 
database, there are ten (10) different images of each of 40 
distinct subjects (classes). For some subjects, the images 
were taken at different times, between April 1992 and April 
1994, with the variations of lighting, facial expressions 
(open/ closed eyes, smiling/ not smiling) and facial details 
(glasses/ no glasses) [14]. FERET is a large and 
well-designed face database. FERET contains face images 
associated with 1196 individuals. Since our normalization 
approach – Hambridge feature location [15][16] is 
constraint to frontal images, a substantial number of these 
(i.e. left- and right-profile views) are unsuitable for our 
experiments. Thus, we have selected a subset of 230 users, 
each having six essentially normalized frontal images with 
variations in pose (i.e. within ±  25 degrees rotation in 
depth) scale and illumination. Many of these images were 
taken over an extended period, and are highly varied in 
terms of eyewear (absence and presence thereof) and 
illumination [17]. 

In this paper, the following are the abbreviations used for 
brevity in our subsequent discussion: 
-  PZM denotes pseudo Zernike moments analysis. 
-  mPZM denotes Multi-bit Scheme. 
-  mPZM_XOR denotes BioBit scheme with XOR logic 
operation for integrating y and r. 
 In our experiment, each face sample in a same class 
(denoted as intra-class sample) is combined with the same 
distinct TRBs to generate BioBit template per sample, 
known as intra-class BioBit. Different sets of TRBs are 
combined with different face classes in order to produce 
inter-class BioBit templates. To generate genuine 
distribution, intra-class BioBits are matched against each 

other. In other words, each BioBit of the class is matched 
against all other BioBits in the same class. This process is 
repeated for all the other classes. For imposter distribution, 
the first BioBit of each class is matched against the first 
BioBit of all the other classes and the same matching process 
is repeated for the subsequent BioBits.  

To simulate the stolen-biometrics scenario, a face data is 
mixed to all sets of random bit sequences from all classes 
and the matching is done according to the imposter match 
described above and we name the imposter distribution that 
obtained as pseudo-genuine 1. For stolen-token scenario, we 
consider the worst case whereby only one set of random bit 
sequence is mixed to all face images of all classes and the 
matching is done according to the imposter match - 
pseudo-genuine 2. We repeat the same process ten times and 
the results are averaged to reduce the statistical frustration 
caused by random numbers. For matching classification, 
Hamming distance is used for binary outputs generated by 
mPZM and mPZM_XOR, while a simple Euclidean distance 
metric is adopted for real value output generated by PZM. In 
this paper, we compare our proposed method, BioBit 
scheme, with a new cancelable biometrics approach based 
on BioHashing (BioHash), proposed [7][18] in the 
legitimate token, stolen-biometrics and stolen-token cases. 
 
A.    Performance evaluation 

The first experiment is conducted for the purpose of 
determining a pertinent and optimal moment-based feature 
vector which is able to provide an optimal representation for 
the biometrics identity. At this stage, the performance of 
PZM in term of equal error rate (EER) is evaluated. EER is 
the average value of False Accept Rate (FAR, probability of 
a not-enrolled individual being identified) and False Reject 
Rate (FRR, probability of an enrolled individual not being 
identified). Table I shows the error rates of PZM with 
different feature length setting for both ORL and FERET 
databases. The table demonstrates that larger number of 
feature length (or higher moment order) provides better 
verification rate because higher order moments provide 
more and finer details about the face image. However, this is 
only true to a certain point as the verification rate will level 
off or even worse if the feature length is extended further. 
PZM’s EERs show increasing after feature length =160 in 
ORL database and feature length =100 in FERET database. 
This implies that excessive high order moment features 
contain redundant information and unwanted signals (e.g. 
noise) which might influence the representation capability. 
From the table, we can see that the overall error rates of PZM 
in both databases are relatively high. This is because the 
significant illumination and facial expression variations in 
the face images create a serious degradation on biometrics, 
influencing the representation capability of PZM.  

From Table II, we can observe that mPZM attains much 
better recognition performance than PZM. This implies that 
Multi-bit Scheme (mPZM) is able to generate a more stable 
and distinguishable bitstring, even through its input is a 
non-stable moment feature vector. From the figures, in 
general, the performances of mPZM_XOR are increasing for 
larger feature length. This explains that larger feature length 
comprises more refined feature representation with higher 
accuracy. We also can see that the proposed scheme, 
mPZM_XOR, is just slightly poorer than BioHash in the 
legitimate token case. But, an impressive performance is still  
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TABLE I  
THE ERROR RATES OF PZM WITH DIFFERENT FEATURE LENGTH 

SETTING FOR BOTH ORL AND FERET DATABASES 
Database Feature 

length 
EER 
(%) 

Database Feature 
length 

EER 
(%) 

ORL 

20 20.55 

FERET 

20 28.04 
40 17.74 40 26.72 
60 17.76 60 25.89 
80 17.23 80 25.46 

100 17.02 100 25.30 
120 16.60 120 26.00 
140 16.33 140 26.39 
160 16.25 160 26.80 
180 16.38 180 27.13 
200 16.40 200 27.29 
220 16.36 220 27.63 
240 16.40 240 27.57 
260 16.42 260 27.78 
280 16.51 280 27.95 
300 16.54 300 27.96 

 
obtained by mPZM_XOR, yielding near to zero EER 
(EER=0.012% when tested on ORL and EER=0.016% on 
FERET, with feature length 100). Besides that, through the 
analysis, BioBit scheme is able to provide an impressive 
performance with EER=0.001% and EER=0.002% tested on 
ORL and FERET datasets in the stolen-biometrics case. In 
the stolen-token case, mPZM_XOR achieves much superior 
recognition result than BioHash. The proposed method is 
able to attain EER=1.28% on ORL and EER=1.36% on 
FERET when stolen-token case occurred. Unfortunately, 
BioHash shows a great degradation in performance, by 
obtaining EER=24.5% on ORL and EER=31.5% on 
FERET, in the stolen-token case, as pointed by [19][20]. 

We also demonstrate the performance of PZM, mPZM, 
mPZM_XOR and BioHash in the form of Receiver 
Operating Characteristic (ROC) curves as plot of the 
genuine accept rate (GAR) against the false accept rate 
(FAR) for all possible operating points in Fig. 2. The nearer 
the curve to the upper left corner, the better the performance 
is. It can be seen that our proposed method, as well as 
BioHash, achieves excellent recognition performance, 
nearly to 100% GAR at FAR=0.01%, in the legitimate token 
case. However, BioHash obtains serious performance 
degradation when the stolen-token scenario occurred. 
Fortunately, our proposed system, BioBit, is found less 
suffered to this problem. BioBit (mPZM_XOR) attains false 
accept rate for pseudo-genuine 2 (stolen-token case) is 
0.002% in ORL and is 0.001% in FERET when we set a 
threshold along with the genuine accept rate of 90%. 

Fig. 3(a) depicted the genuine, imposter and 
pseudo-genuine populations of mPZM_XOR tested on ORL 
in the legitimate token, stolen-biometrics and stolen-token 
cases, same to BioHash in Fig. 3(b). For the legitimate token 
and stolen-biometrics cases, there is a good separation of the 
genuine and imposter distributions, as well as 
pseudo-genuine I distribution, in both cancelable biometrics 
techniques. This justifies that the two approaches are robust 
and able to achieve excellent recognition performance, 
nearly to 100% GAR, in both legitimate token and 
stolen-biometrics cases. However, for the stolen-token case, 
the pseudo-genuine II distribution is slightly overlapped 
with the genuine and hence it deteriorates the performance 
to EER= 1.28% in our proposed system. Nevertheless, it is 
far better than the BioHash which obtains EER=24.5%, 
having a strong overlapping in between the pseudo-genuine  

TABLE II 
 PERFORMANCE EVALUATION IN TERM OF EER FOR PZM, MPZM 
AND MPZM_XOR FOR DIFFERENT FEATURE LENGTHS, TESTED 

ON (A) FERET DATASET AND (B) ORL DATASET. 
 

(a) FERET dataset 

Method 
Equal Error Rates (EERs) (%) 

20 40 60 80 100 

PZM 28.04 26.7
2 

25.8
9 

25.4
6 25.3 

mPZM 13.68 7.44 4.11 2.34 1.76 

BioHash 2.04 0.62 0.18 0.03 0.00 

BioHash 
(stolen-biometrics case) 1.68 0.38 0.12 0.08 0.05 

BioHash (stolen-token 
case) 35.44 36.9

9 
35.3

6 
36.5

5 31.54 

mPZM_XOR/ BioBit 4.80 1.20 0.53 0.17 0.01 

mPZM_XOR 
(stolen-biometrics case) 0.24 0.16 0 0 0 

mPZM_XOR 
(stolen-token case) 10.66 5.71 3.10 1.88 1.36 

 
(b) ORL database 

Method 
Equal Error Rates (EERs) (%) 

20 40 60 80 100 

PZM 20.55 17.7
4 17.76 17.23 17.02 

mPZM 15.08 5.73 3.20 1.61 1.61 

BioHash 0.64 0.22 0 0 0 

BioHash 
(stolen-biometrics case) 0.67 0.05 0.01 0 0 

BioHash (stolen-token 
case) 36.08 32.6

6 27.48 26.46 24.51 

mPZM_XOR/ BioBit 5.44 1.34 0.78 0.35 0.012 

mPZM_XOR 
(stolen-biometrics case) 3.14 0.38 0.06 0 0 

mPZM_XOR 
(stolen-token case) 14.45 7.45 4.12 2.51 1.27 

 

 
(a) ORL dataset 
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(b) FERET dataset 

Fig. 2.  The Receiver Operating Characteristic (ROC) curves of genuine, 
imposter and pseudo-genuine2 (stolen-token case) for (a) ORL dataset and 

(b) FERET dataset, at m=100. 
 

 
(a) 

 
(b) 

Fig. 3.  The distributions of genuine, imposter, pseudo-genuine1 
(stolen-biometrics case)  and pseudo-genuine2 (stolen-token case) for (a) 

mPZM_XOR and (b) BioHash, in ORL database with m=100. 
 

II and genuine distributions. The results justify the analysis 
in section 5.0 regarding the robustness of BioBit in 
legitimate token, stolen-token and stolen-biometrics cases. 
 

VII. CONCLUSION AND FUTURE WORKS 
In practical, this is hard to get nearly zero FAR and FRR 
errors in the biometrics recognition systems due to the fact 
that the biometrics signals have high uncertainty and the 
classes are difficult to completely separate in the 
measurement space. This paper presents a two-factor 
recognition system by using both face data and a unique 
token deposited with random binary data. The proposed 
BioBit scheme offers 3 main advantages: 
(1) The combination of biometrics face data and 

user-specific random bit sequence provides a perfect 
verification performance. The proposed scheme is able 
to provide a clear separation of the genuine and 
imposter populations in the legitimate token case. On 
the other hand, the proposed technique is still able to 
obtain an encouraging result when the stolen-token case 
occurred, compared with BioHash. 

(2) In this proposed approach, two authentication factors 
are needed in order to derive a BioBit for verification. 
This can strengthen the security of the recognition 
system as two-factor authentication fortifies the security 
by prohibiting any single-factor attack; 

(3) The proposed scheme also addresses the invasion of 
privacy issue, such as biometrics fabrication. The 
compromised BioBit could be alleviated through the 
user-specific credential revocation via token 
replacement. Furthermore, multiple templates can be 
generated from a same biometrics for multiple 
applications using different sets of bit sequences.  

Future works in the implementation of other logic 
operations (such as AND, OR, etc), a combination of logic 
operations or other forms of mixing mechanism are directed 
towards the improvement of the practicability of the BioBit 
recognition system.  
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