
 Bahria University Journal of Information & Technology Vol. 4, Issue 1August 2011

15 1999-4974@2011BUJICT



Abstract:

Geometric design often requires the capability to manipulate

flexible objects, including bending, twisting, compressing or

stretching parts of the model or its entire geometry. The proposed

approach comprises also shape deformations with multiple (real,

auxiliary, and virtual) control points and constrained, directional,

and anisotropic deformations. It allows a user to edit a given shape

interactively and spontaneously.Our approach successfully suggests

a sense of rigidity of the lattice, which is difficult in interactive

shape editing approaches.Mathematically, the problem being

addressed in this research work involves a Free-Form Deformation

(FFD) of the features of the affine three dimensional geometry of

the image. The algorithms primarily develop are projective

geometry techniques, which form the basis for accurate

deformation. Furthermore, these algorithms generally assume

standardized images, i.e. no prior knowledge of either the shape, or

its pose (position and orientation) with respect to the transformed

coordinates. This project aims to develop a general framework for

perform mesh deformation and editing in real-time. The

prerequisites include C/C++, OpenGL and basic knowledge in

differential geometry.

Index Terms: Interactive Shape Editing, Free-Form

Deformation, OpenGL, Digital Geometric Modeling, Visual C++.

I. INTRODUCTION

In the early days of computer graphics, the shape editing

techniques were very simple, ranging from static texture to

simple particle systems using free form deformation. At that

time, the only goal was to tell the researcher that the specific

part was solid geometric model and did not prioritize much on

the realism of the deformation techniques due to the restricted

capabilities. With the fast development of free form

deformation in recent years, realistic shape editing is possible

and thus research in shape editing became more vigorous [1].

The general interactive shape editing design using free-form

deformation is the simulation in geometric modeling in which

each geometry value on every point in the region such as

shape into a uniform value associated with the region. As a

consequence, the simulation does not support very well

geometric modeling aspects such as mesh boundary [2].

However, geometric modeling simulation will not be able to

be handled by current computer as the computer has to

Dr. HlaMyoTun, Associate Professor and Head, Department of Electronic

Engineering, Mandalay Technological University, Mandalay Region,

Republic of the Union of Myanmar. hmyotun@myanmar.com.mm

evaluate every deform shape. The relatively new Free-Form

Deformation Method (FFDM) is the interactive shape editing

simulation which can handle shape editing simulation

correctly as it stands on the middle between geometric

modeling and interactive shape editing. FFDM is the extension

of Sederberg Engine which originated from solid geometry

modeling. In the Sederberg Engine, the simulation is done on

discrete time step over discrete region, in which the set of

deform image [3], [4], [5] and [6].

II. MATHEMATICAL MODEL OF INTERACTIVE SHAPE EDITING

Mathematically, the FFD is defined in terms of a tensor

product trivariate Bernstein polynomial. We instigate by

arresting a local coordinate system on a parallel piped region,

as shown in Fig.1. The red colour points are control points.

Any point ISD has (s,t,u) coordinates in this system such that

ISD= ISD0+sS* tT * uU. (1)

The (s.t,u) coordinates of ISD can easily be originated using

linear algebra. A vector solution is

s=
T×U (ISD-ISDo)

T×U.S
 (2)

u=
S×T (ISD-ISDo)

S×T.U
 (4) t=

S×U (ISD-ISDo)

S×U.T
(3)

Note that for any point interior to the parallel piped that 0<s

<1, 0<t<l and 0<u<l. We next compel a grid of control points

CPijk on the parallelpiped. These form t+l planes in the s

direction, m+l planes in the T direction, and n+l planes in the

u direction. The control points are designated by small white

diamonds, and the red bars indicate the neighbouring control

points. These points lie on a lattice, and their locations are

defined

CPijk=ISD0+
i

l
S+

j

m
T+

k

n
U (5)

where S, T and U represent the orthogonal axes of a bounding

box (of size l, m and n) used to contain the object to be

deformed. i, j and k are the evenly-spaced denominations of l,

m and n used to denote the i-th Control Point along the l-axis,

j-th Point along the m-axis, and so on. The deformation is

stipulated by moving the 𝐂𝐏ijk from their undisplaced, lattieial

positions. The deformation function is defined by a trivariate

tensor product Bernstein polynomial. The deformed position

ISDffd of an arbitrary point ISD is established by first

computing its (s,t,u) coordinates from equation (1), and then

evaluating the vector valued trivariate Bernstein polynomial:

Real-Time Interactive Shape Editing Design

Using OpenGL

Hla Myo Tun

 Bahria University Journal of Information & Technology Vol. 4, Issue 1August 2011

16 1999-4974@2011BUJICT

ISDffd= ∑ (
l

i
) (1-s)l-i

l

i=0

si |∑ (
m

j) (1-t)m-j

m

j=0

sj |∑ (
n

k
) (1-s)n-k

n

k=0

sk|| (6)

whereISDffd is a vector containing the Cartesian coordinates

of the displaced point, and where CPijk is a vector containing

the Cartesian coordinates of the control point [1], and [7].

The principle assumptions, for simplification, in this

implementation are:

 that it only allows movement of one Control Point at a time,

and

 that it assumes the axes of the initial bounding box to be

parallel to the three principal axes.

From ISDffd, for each v calculated, the ijk-values are

constant, as well as the lmn-values. The stu-values belong to

each point and so are saved with it. The Control Points will

vary along with their movement. However, from CPijk, the

three recursive summations are expensive to compute, with

several repeated calculations, especially when applied over all

vertices. Therefore, a work-around was devised. By assuming

that one control point can only be manipulated at a time, the

equation is simplified to become

v'=v+(CPijk
'

-CPijk)*ISDffd (7)

The control points 𝐂𝐏ijk are actually the coefficients of the

Bernstein polynomial. As in the ease of Bezier curves and

surface patches, there are momentous relationships between

the deformation and the control point placement. Note that the

12 edges of the parallel piped are actually mapped into Bezier

curves, defined by the control points which initially lie on the

respective edges. Also, the six planar faces map into tensor

product Bezier surface patches, defined by the control points

which initially lie on the respective faces. This deformation

could be originated in terms of other polynomial bases, such

as tensor product D-splines or non-tensor product Bernstein

polynomials

ISD0

S

T

U

Fig.1. The s,t,uCoordinate System for Shape Editing

III. SHAPE EDITING DOMAIN

Although the purpose of this work is to establish FFD as a

viable tool for solid modelling, we note that it can be applied

to virtually any geometric model. Only the polygon vertices

are transformed by the FFD, while maintaining the polygon

connectivity. Deformation of polygonal data is conferred more

thoroughly in [1]. The sphere and the plane could each be

articulated in parametric equations, or in implicit equations.

The FFD can be applied with equal validity to either

representation. A very important characteristic of FFD is that a

deformed parametric surface remnants a parametric surface. If

the parametric surface is given by x=f(α¸β)¸ y=g(α¸β) and

z=h(α¸β) and the FFD is given by 𝐈𝐒𝐃ffd = ISD(x¸ y¸ z)), then

the deformed parametric surface patch is given by

𝐈𝐒𝐃ffd(α, β) = x(f(α¸β)¸ g(α¸β) ¸ h(α¸β)).

An important corollary to this is that parametric curves

remain parametric under FFD. If one performs FFD in a CSG

modelling environment only after all Boolean operations are

executed, and the primitive surfaces are planes or quadrics,

then all intersection curves would be parametric, concerning

rational polynomials and possibly square roots. Quadrics and

planes make exceptional primitives because they possess both

implicit and parametric equations. The parametric equation

enables rapid computation of points on the surface, and the

implicit equation provides a simple point classification test - is

a point inside, outside, or on the surface. To organize a point

on a deformed quadric, one must first compute its s,t,u

coordinates and substitute them into the implicit equation. The

s,t,u coordinates can be created by subdividing the control

point lattice, or by trivariate Newton iteration [8]. This inverse

mapping necessitates significant computation, and can be a

foundation of robustness problems, especially if the Jacobian

of the FFD changes sign.

IV. ALGORITHM PIPELINE OF INTERACTIVE SHAPE EDITING

DESIGN

In this project, the Sederberg Algorithm is used to simulate

interactive shape editing design in 3D domain with an object

is deformed to the Free-Form sense. The project consists of

three main parts, Sederberg Engine, the M-file Reader, and the

user input. The Sederberg Engine which is used to compute

the control point on the image comprises the transformation

from x,y,z, to s,t,u domain and reverse transformation step,

and the output is the transformation image by Free-Form sense

which is used in the real-time interactive shape editing design.

The real-time interactive shape editing design simulation

consists of Sederberg Engine and M-file reader step, which in

every time step the image will deform to its neighboring

region in the Sederberg Engine step and will be advocated

according to the control point allocation in the M-file reader

step. The user can interact both with the Sederberg Engine and

the real-time interactive shape editing simulation. For

example, the user can add external images which are used as

input to the control point allocation step in the Sederberg

Engine step. Another source of the external images is the

movement of the object as the object movement can disturb

 Bahria University Journal of Information & Technology Vol. 4, Issue 1August 2011

17 1999-4974@2011BUJICT

the shape editing. When the user transforms the image, the

specified location and orientation of the image boundary will

be updated and will be used as input to the control point

allocation step in Sederberg Engine and to the real-time

interactive shape editing simulation. The information from the

image boundary is necessary since the real-time interactive

shape editing cannot move past through the image boundary.

The information from updating the Free-Form sense such as

the MATLAB m file and the boundary information can be

obtained by doing the deformation process since the

simulation is done on the grid consisting of geometry domain.

The overview of the program flow is shown on the Fig.2 on

the same page.The simulation is implemented in C++

language by using Microsoft Visual C++ 2008 Express

Edition. As for the graphics API we use OpenGL together

with Cg for the GPU programming.

User Input

Declare the Necessary

Parameter for Interactive

Shape Editing Design

Control Mouse

Clicking

Convert Pivot from

x,y,z to s,t,u

Sederberg Engine

Free-Form

Deformation

Image

M-File Reader

Start

End

Figure.2. Program Flow

V. INTERACTIVE SHAPE EDITING METHOD

The Sederberg Engine we choose to implement is the Free-

Form Deformation which is the three dimensional shape

editing image. The reason we chose this Engine was that the

Sederberg has too high deformation for solid modeling which

may cause the simulation to be a high actuate. On the other

hand, the Sederberg might give a very accurate result;

however, due to large number of deformation will make the

implementation become very high. The Sederberg Engine

section as shown on the above Fig.2 consists of convert pivot

x,y,z. The result of the Sederberg Engine is the evolution of

the shape editing which will be used to advent the Free-Form

Deformation in the sections following the shape editing

method.

A. M-File Reader

In the M-file reader step the three dimensional image is read

by MATLAB m file to the same original image. Before the

simulation is started with the M-filer reader, this 3D image is

initialized with the graphic plane, which is the deformation

image for Sederberg Engine. As the result, the total deformed

images are evaluated when read from M file reader. In the M-

file reader the program visits each original 3D image and

transforms the deformation images. The M-file reader is given

on the following Algorithm.1.

B. Sederberg Engine

In the Sederberg Engine step in every vertex is transferred

to the same direction vertex in the neighboring control point

Algorithm.1 M-File Reader.

1 :MFileReader = MFileReader() //using namespace standard

2 :MFileReader = ObtainNextVertex()//Obtains next vertex

3 : indexCh1←indexCh1+ 7 //Move 7 character right to the 44

: vector's number.

5 : indexCh2←find(indexCh1)

6 : array1← 0 // Empty the array

7 : array1←new char[array Size]

8 :// copy the value out

9 : vertexNum←atoi(array1)

10 :VertexPt→vertPt

11 : vertPt.ptNumber= vertexNum//assign number of e vertex

12 : indexCh1←indexCh2 + 1

12 :// Obtain Coords

13 : for i = 0 to 2

14 :indexCh1←indexCh1+ 1//Move 1 character right to the

15 :// next coordinate (skips spaces)

16 : array1← 0 // Empty the array

17 : array Size←indexCh2 - indexCh1

18 :// copy the value out

19 : switch (i)

20 : case 0→ vertex point position x = vertex Coordinate

21 : case 1→ vertex point position y = vertex Coordinate

22 :case 2→ vertex point position z = vertex Coordinate

23 :indexCh1 = indexCh2; // Update start pointer with end

24 : indexCh1←indexCh1+9 // Obtain normal

25 : end

26 :for i = 0 to 2

27 :indexCh1←indexCh1+ 1//Move1 character right to the next

28 :array1← 0// Empty the array

29 :array Size←indexCh2 - indexCh1

30 :// copy the value out

31 :switch (i)

32 :case 0→ vertex point normal x = vertex Coordinate

33 :case 1→ vertex point normal y = vertex Coordinate

34 :case 2→ vertex point normal z = vertex Coordinate

35 : indexCh1←indexCh2; // Update start pointer with end

36 :// Save the vertex (Account for non-zero start)

37 :// Obtains next face in the file

38 : end

39 : MFileReader=ObtainNextFace()

40 : indexCh1←find(cstrFace)

41 : if indexCh1≠ npos string // Found a face

42 : indexCh1←indexCh1+5//Move 5 character right to the

43 :// face's number

44 : indexCh2←find(indexCh1)

45 :array1← 0// Empty the array

46 :array Size←indexCh2 - indexCh1

47 : end // copy the value out

48 : thisFace.faceNumber=vertexNum//assign number of e

49 :// vertex

50 : indexCh1←indexCh2 + 1 // "Face X _<-"

51 : for i = 0 to 2 // Obtain coordinates

52 : indexCh2←find(indexCh1)

53 : if indexCh2= npos string // Finished

54 : indexCh2 = line.length()

55 :array1← 0// Empty the array
56 :array Size = indexCh2 - indexCh1

57 : end // copy the value out

58 : vertexPts + vertexNum – 1

59 : indexCh1←indexCh2 // Update start pnter with end

60 :// Executes the read and obtaining procedure

61 : MFileReader=Read(string filename, MObject *mObj)

62 : ifstream=readFile //MObject mObj;

63 : throw 0 //readFile.close();

64 : if indexCh1≠ npos string // Found a vertex
65 : mObj.ObjFaces = faces

66 : mObj.ObjVertexPts = vertexPts

67 : vertexPts.clear()

68 : readFile close()//return mObj

 Bahria University Journal of Information & Technology Vol. 4, Issue 1August 2011

18 1999-4974@2011BUJICT

which is in the direction of the vertex. Before the simulation is

started with the Sederberg Engine, every vertex is initialized

with the equilibrium value, which is the domain of s,t,u

corresponding to the domain of x,y,z. As the result, the total

particle distribution of each vertex in the beginning of the

vertex is ISD0. In the Sederberg Engine the program visits

each vertex and copies the value of distribution function of

every vertex. The Sederberg Engine is given on the following

Algorithm .2.

Thus, the applied algorithm is as follows:

Step 1. The vertices are converted in bulk to a corresponding

array of stu-space coordinates. For simplicity, this project

assumes or forces the axes of the stu-space as the same as that

of xyz-space, though the origin need not be similar. This

eliminates costly rotational translation per vertex into the stu-

space.

Step 2. The Control Points (CPs) are initialized from the

object’s stu-space bounding box (in this case, each boundary

line divided into four sections of five CPs). They are saved in

an array.

Step 3. The engine is initialized: The stu-vertices are passed

into the engine for storage, as well as the co-ordinates for its

origin.

Step 4. The image is displayed with the CPs, and the user

selects and moves one point.

Step 5. The corresponding CP’s new and initial point are

passed into the engine, which calculates and re-saves the new

stu-coordinates of each vertex. These vertices are then

converted back en masse into the xyz-space.

Step 6. The newly-modified vertices and CP are refreshed

onscreen.

Step 7. The step 4-6 is repeated as necessary.

VI. IMPLEMENTATION

In this section, we present some results of the FFD

simulation using the implementation discussed in previous

section.We conducted six simulations with different settings to

in order test certain features of the simulation. The first

simulation was the bunny simulation. The Free-Form

Deformation essentially does not depend on the any m files.

However, if the m file input is active, the FFD will not only

shapes and sizes of image, but also get campaigner according

to the deformation which will make it difficult to observe the

interactive shape editing.The control points for deforming the
image are specified by identifying the two main steps for point

grid and point selection.

A. Point Grid

For our Interactive Shape Editing with Free Form

Deformation program, we will use a control mesh derived

from the bounding box of the model. This mesh will be a 3D
grid of 4x4x4 which gives us 64 control points.

Fig.3.Point Grid

B. Point Selection

OpenGL provides a mechanism to select objects in a 3D

scene. This is done by making use of the Name Stack. The

idea is simple, we can enter selection mode (GL_SELECT)

and render a small area around the mouse. For each selectable

object that we render, we push and pop a unique name (the

name is actually an integer number) into the name stack.
When each selectable object is rendered, if it intersects the

viewing volume a new hit record (with its corresponding

depth information) is created. After we go back to the normal

rendering mode, we can retrieve the hit records and select the

hitted object that is closer to the camera. The function calls for

the name stack are ignored if not in selection mode. This

means that we could use a single rendering function with the

name stack calls inside, but since only the control points are

selectable in our program, we chose to enter selection mode

and only render these points (using their position in the array

Algorithm.2 Sederberg Engine.

1 :SederbergEngine

2 : Convert xyz To stu(Vector xyz)// Assign

3 : Results ←xyz.x-origin.x,xyz.y-origin.y,xyz.z-origin.z

4 : Convert stu To xyz(Vector stu)// Assign

5 : Results ←stu.x+origin.x,stu.y+origin.y,stu.z+origin.z

6 : Copy From Vertexes(vector<VertexPt>inputVectors)

7 : stu point ← 0

8 : for i = 0 to input Vectors size

9 : stu Points push back(SederbergAlgorithm)

10 : end // end for

11 : end // Copy From Vertexes

12 : Copy To Vertexes(vector<VertexPt> inputVectors)

13 : vector<VertexPt> = result

14 : for i = 0 to input Vectors size

15 : stu Points push back(SederbergAlgorithm)

16 : end // end for

17 : end // Copy To Vertexes

18 : Initialize(Vector stuOrigin, Vector lmnInput)

19 : // float sGran, float tGran, float uGran

20 : origin = stu_Origin

21 : lmn = lmn_Input

22 : UpdatePoint(Vector point,Vector originalCP,Vector

23 : changedCP,Vector ijk)

24 : Vector stu

25 : stu.x = point.x - origin.x

26 : stu.y = point.y - origin.y

27 : stu.z = point.z - origin.z

28 : ComputeWeight(stu, lmn, ijk)

29 : point.x=point.x+(changedCP.x-originalCP.x)*weight

30 : point.y=point.y+(changedCP.y-originalCP.y)*weight

31 : point.z=point.z+(changedCP.z-originalCP.z)*weight

32 : end // end UpdatePoint()

33 : Factorial(int number)

34 : if number is less than or equal 1 then return 1

35 : temp = number * Factorial(number - 1)

36 : end // end if

37 : return

38 : end // end of Factorial

39 : Factorial(int upper, int lower)

40 : int temp = Factorial(upper)

41 : temp = temp / Factorial(lower)

42 : temp = temp / Factorial(upper - lower)

43 : return temp

44 : end // end of Factorial

45 : ComputeWeight(Vector stu, Vector lmn, Vector ijk)

46 : result=Factorial((int)lmn.x(int)ijk.x)*pow(stu.x,ijk.x)*

47 : pow(1 - stu.x, lmn.x - ijk.x);

48 : result*=Factorial((int)lmn.y,(int)ijk.y)*pow(stu.y,

49 :ijk.y)*pow(1 - stu.y, lmn.y - ijk.y);

50 : result*= Factorial((int)lmn.z,(int)ijk.z)*pow(stu.z,

51 :ijk.z)*pow(1 - stu.z, lmn.z - ijk.z);

52 : end // end SederbergAlgorithm

 Bahria University Journal of Information & Technology Vol. 4, Issue 1August 2011

19 1999-4974@2011BUJICT

as the name) when the user clicks on the screen. The user will

then be able to move the selected point around while the

mouse button is still pressed. Since the normal rendering and

the rendering for the selection function will be different, it is

very important to use the same projection matrix, otherwise

the selection would not work properly since the points would
be projected on a different position in the projection plane.

Fig.4. Point Selection

VII. EXPERIMENTAL RESULTS

A. Experimental Results for Bunny Image

The following Fig.5(a) shows the screenshot of the

simulation with the Pre-Deformed bunny image. The
screenshots were taken in 4×4×4 frame. We can see from the

bunny image that lies inside the Sederberg boundary for Free-

Form Deformation process. The screenshot results of post-

deformed bunny image with (s=2, t=1, u=0) is illustrated in

Fig.5(b).

(a) (b)

Fig.5 (a) Pre-Deformed Bunny Image (b) Post-Deformed Bunny Image with

(s=2, t=1, u=0)

B. Experimental Results for Knot Image

Fig.6 (a) shows the screenshot of the simulation with the

Pre-Deformed knot image. The screenshots were also caught

in 4×4×4 frame. We can perceive from the knot image that

deceits inside the Sederberg boundary for Free-Form

Deformation development. The screenshot results of post-

deformed knot image with (s=2, t=3, u=2) is illustrated in

Fig.6 (b).

(a) (b)

Fig.6 (a) Pre-Deformed Knot Image (b) Post-Deformed Knot Image with

(s=2, t=3, u=2)

C. Experimental Results for Eight Image

The following Fig.7 (a) demonstrates the screenshot of the

simulation with the Pre-Deformed eight image. The

screenshots were held in 4×4×4 frame. We can see from the

eight image that deceptions within the Sederberg boundary for

Free-Form Deformation procedure.The screenshot results of

post-deformed eight image with (s=2, t=2, u=2) is illustrated

in Fig.7 (b).

 (a) (b)

Fig.7 (a) Pre-Deformed Eight Image (b) Post-Deformed Eight Image with

(s=2, t=2, u=2)

D. Experimental Results for Gargoyle Image

Fig.8 (a) proves the screenshot of the simulation with the

Pre-Deformed gargoyle image. The screenshots were also

trapped in 4×4×4 frame. We can recognize from the gargoyle

image that shams surrounded by the Sederberg boundary for

Free-Form Deformation expansion.The screenshot results of

post-deformed gargoyle image with (Movement of Four

Points) is illustrated in Fig.8 (b).

 (a) (b)

Fig.8 (a) Pre-Deformed Gargoyle Image (b) Post-Deformed Gargoyle

(Movement of Four Points)

 Bahria University Journal of Information & Technology Vol. 4, Issue 1August 2011

20 1999-4974@2011BUJICT

E. Experimental Result for Cap Image

Fig.9 (a) confirms the screenshot of the simulation with the

Pre-Deformed cap image. The screenshots were also

fascinated in 4×4×4 frame. We can distinguish from the cap

image that shams surrounded by the Sederberg boundary for

Free-Form Deformation expansion. The screenshot results of

post-deformed cap image with (s=2, t=2, u=2) is demonstrated

in Fig.9 (b). In proportion to this simulation result, the cap

image is distorted the shape by particular coordinate on the

image.

(a) (b)

Fig.9 (a) Pre-Deformed Cap Image(b) Post-Deformed Cap with (s=2, t=2,

u=2)

F. Experimental Result for Lion Image

Fig.10 (a) corroborates the screenshot of the simulation with

the Pre-Deformed lion image. The screenshots were also

enthralled in 4×4×4 frame. We can discriminate from the lion

image that shams surrounded by the Sederberg boundary for

Free-Form Deformation expansion. The screenshot results of
post-deformed lion image by rotating down position s,t,u axis

is demonstrated in Fig.10 (b). In proportion to this simulation

result, the lion image is rotated the shape by particular

coordinate on the image. The screenshot results of post-

deformed lion image by rotating up and right position s,t,u

axis is demonstrated in Fig.10(c) and (d).

(a) (b)

 (c) (d)

Fig.10 (a) Pre-Deformed Lion Image(b) Post-Deformed Lion with s,t,u Axis

Rotation (Down)(c) Post-Deformed Lion with s,t,u Axis Rotation (Up) (d)

Post-Deformed Lion with s,t,u Axis Rotation (Right)

VIII. STATISTIC TABLE FOR SIMULATION RESULTS

The statistic table for the deformation of several models is
given in Table.1. In this table, the deformation time for Eight

image is the lowest deformation time than other models. The

deformation time for Lion image is the highest deformation

time with the same vertices. The deformation time of Knot

image and Gargoyle image is approximately the same.

According to this statistic table from the simulation results, the

Sederberg Engine is applied to deform the several images and

the several amounts of vertices.

TABLE I

STATISTIC TABLE

Model Vertices
Frame

Size
Algorithm

Deformation

Times (Seconds)

Bunny Image 40002 4×4×4 Sederberg 0.1-0.2

Knot Image 5000 4×4×4 Sederberg 0.3-0.4

Eight Image 3070 4×4×4 Sederberg 0.05-0.15

Gargoyle Image 20002 4×4×4 Sederberg 0.3-0.5

Cap Image 186 4×4×4 Sederberg 0.2-0.4

Lion Image 5000 4×4×4 Sederberg 0.35-0.6

IX. CONCLUSION

We experienced clipping, especially when the picture was

deformed in several unnatural ways e.g. trying to ‘push’ back

a CP that had been ‘pulled’. There are also cases where the

object stretched out of the bounding box as in Fig.3, which

was not expected. However, in casual cases e.g. game models

that favor improved game performance over full accuracy of

the models, the performance of these deformations, if applied

over modest CP movement, is well worth the loss in accuracy,

especially since the deformed transformations of objects are

not truly intuitive processes.As the only value to change per

calculation pass is the value of the single manipulated control

point CPIJK, to CPIJK’ at point I-J-K. All other ijk- and stu-

values are unchanged per vertex. The rational here is that the

weight of all other vertices and Control Points on the vertex v

are the same as before CPIJK‘s shift: instead of a summation of

all points each pass, a difference between the current and

initial states is added or subtracted proportional to the Control

Point IJK’s shift. With this assumption in place, the

calculation is greatly simplified. The six summations are

eliminated, while the only values that need to be stored in

memory are the co-ordinates of each vertex and Control Point

in the stu-space.

ACKNOWLEDGMENT

I would wish to acknowledge the many colleagues at

Mandalay Technological University who have contributed to

the development of this paper. In particular, I would like to

thank Myat Su Nwe, my wife, ThetHtarSwe, my daughter, and

ZayYarTun, my son, for their complete support.

REFERENCES

[1] Sederberg et al., “Free-Form Deformation of Solid Geometric Models”,

Proceedings of SIGGRAPH 1986, pp. 151-160, 1986.

[2] Battle et al., “Three-Dimensional Attenuation Map Reconstruction

Using Geometrical Models and Free Form Deformations”,IEEE

Transactions on Medical Imaging, pp.404-411, 2000.

 Bahria University Journal of Information & Technology Vol. 4, Issue 1August 2011

21 1999-4974@2011BUJICT

[3] Borrel, and Rappoport et al., “Simple constrained deformations for

geometric modeling and interactive design”, ACM Transactions on

Graphics, 13(2):pp. 137–155, 1994.

[4] Chunyan, Jin and. Bin, et al, “Shape Edit Distance on Contour based

Shapes”, Proceedings of the Sixth International Conference on

Intelligent Systems Design and Applications (ISDA'06), 2006.

[5] Difei, Ying, and Xiuzi, “A New Method of Interactive Marker-Driven

Free form Mesh Deformation”, Proceedings of the Geometric Modeling

and Imaging― New Trends (GMAI'06), 2006.

[6] Edward et al., “Interactive Computer Graphics A Top-Down Approach

Using OpenGL”, 2003.

[7] Masamichi et al., “Free-Form Deformation for Implicit Surfaces”, MSc

Dissertation, 2009.

[8] Petros et al ., “Dynamic Free-Form Deformations for Animation

Synthesis”, IEEE Transaction on Visualization and Computer Graphic,

1997.

