
Bahria University Journal of Information & Communication Technologies Vol. 10, Issue II, December 2017

Page 1 ISSN – 1999-4974

Formal modeling and proving of Campus Management System: Event-B

perspective

Nadeem Akhtar, Malik M. Saad Missen, and Rida Zahra Hashmi

 Abstract – Campus Management System (CMS) provides

the management and information processing services that are

critical for the efficient working of the university. A CMS is a

complex system formed by the integration of a number of

interacting sub-systems working together. Errors at any level in

CMS can cause huge loss, therefore it is important to ensure

correctness of the system. A CMS has been formally specified,

modeled, and validated for the Baghdad-ul-Jadeed campus of

The Islamia University of Bahawalpur, Pakistan. It provides a

formally validated correct platform for automation and

management of all the aspects of student admission,

examination, student attendance, results and faculty

attendance. This CMS is based on formal modeling and formal

proofs to ensure correctness, with model-based methods with

underlying mathematical concepts of set theory and first-order

predicate calculus. A novel abstraction and refinement based

formal method Event-B is used. It has an exhaustive industrial

development platform RODIN which provides exhaustive

evaluation and implementations. The proposed CMS model is

centered on the fundamental principles of abstraction and

refinement.

 Index Terms – Campus Management System (CMS);

Event-B; Formal modeling; Formal validation; Theorem

Proving; RODIN.

I. INTRODUCTION

 Education plays one of the most important roles in the

development of a nation. Universities provide higher

education as well as scientific progress to masses. They

impart the education and technical skills required for the jobs

in the industry. They are fundamental in improving the

economic situation, as a result improving the quality of life

of people. A CMS has been proposed for the Department of

Computer Science & IT, The Islamia University of

Bahawalpur, Pakistan. The department has about ten

thousand students enrolled in a number of programs i.e. MCS

(Master in Computer Science), BS (Computer Science), BS

(Information Technology), MSCS (Master of Science in

Computer Science), and PhD (Computer Science).

 The analysis, design, formal modeling and proving of a

correct Campus Management System (CMS). The

correctness of the system is ensured by using formal

modeling and specifications centered on abstractions and

refinement. The CMS is built by first building an abstract

model of the system, and then this abstract model is refined

into a more detailed model (i.e. another abstraction level).

There are a number of refinement processes starting from a

very abstract model of the CMS, periodically making

refinements in this abstract model making it a more detailed

one, and at the end after a number of refinement layers

resulting into a very detailed model of the CMS. This

detailed model is then implemented by using a high-level

implementation language.

The major objectives are:

1) Formal requirement specifications of a CMS in the form

of an abstract model.

2) Formal design specifications of the CMS centered on

multiple refinements of the abstract model i.e. multiple

refinement passes applied on multiple abstract models.

Moving from abstract models towards more concrete

models.

3) Proof rules based verification of the correctness

properties of the proposed CMS models at each and every

refinement level i.e. from abstract levels to concrete

levels.

4) UML-B based formal diagrams for the exhaustive

investigation of states and transitions.

II. STATE OF THE ART

 Formal modeling and formal proofs are important to

ensure the correctness of critical systems. Errors in critical

systems can cause human life loss. Event-B [1] [2] is a novel

formal proof-by-construction method, centered on the

fundamental software engineering principles of refinement

and abstraction. It is a proof-based formal method ideally

suited for safety critical systems. In the last few years there

are some very interesting work carried out in formal-proofs

by using Event-B with its toolset rodin. [3] has argued that

software safety criteria plays a very important role in

verifying software safety, therefore software safety criteria

has been formalized and verified by using Event-B. [4] have

proposed an approach that uses structured natural language

conformant to the formalism of the Semantics of Business

Vocabulary and Business Rules (SBVR) standard for the

implementation of automated transformation from

requirements document to a formal specification in Event-B.

[5] have proposed a model based testing approach for

reactive systems where both the test inputs and expected

results are generated from "restricted" Event-B models. This

work has proved that it is possible to automatically build the

restricted Event-B models from the knowledge base of the

system under test. These restricted models reduce the state

space of the original Event-B models while preserving the

possible testing paths. [6] have proposed an approach for the

specification and verification of flexible workflow

applications of cloud services. A tool is proposed for

automated development of sequence diagrams and then

transformation into Event-B model for formal verification.

Nadeem Akhtar and Malik M. Saad Missen are with Department of

Computer Science & IT, The Islamia University of Bahawalpur. Rida Zahra

Hashmi is with Department of Software Engineering, Bahria University
Islamabad. Email: nadeem.akhtar@iub.edu.pk, saad.missen@gmail.com,

rida.zahra@bahria.edu.pk. Manuscript received on Sep 11, 2017 revised on

Nov 16, 2017 and accepted on Dec 22, 2017.

file:///C:/Users/Telecomm%20Lab/AppData/Roaming/Microsoft/Word/nadeem.akhtar@iub.edu.pk
mailto:saad.missen@gmail.com

Bahria University Journal of Information & Communication Technologies Vol. 10, Issue II, December 2017

Page 2 ISSN – 1999-4974

[7] summarized experiences of teaching formal methods

course of Models of Software Systems (MSS) to master

programs at Carnegie Mellon University (CMU) USA and

Innopolis University (INNO) Russia. The benefits of

teaching Event-B language and its underlying software

development methodology to students are highlighted. This

Event-B course goal is to create leaders in the field of

Software Engineering. [8] works to ensure correct design of

the web service composition. simple or complex web

services can be composed to build more complex web

services. Thus web services composition creates complexity.

The problem of the correct design of a web service

compositions in case of failures is important. This work

presents a novel correct-by-construction formal approach

based on refinement using the Event-B method.

III. FORMAL MODELING AND PROVING

 A formal model ensures correctness by performing a

rigorous analysis of the system. It improves the system

quality and allows the formal specifications to be reused in

the implementation. In a development approach based on

formal modeling, major emphasis is put on the specification

phase (i.e. the specification in relation to the requirements is

verified, and by using formal theorem proving it is ensured

that the specification is consistent with the requirements);

minor emphasis is also put on the test phase verification of

the implementation. In the construction of a complex discrete

system the most important activity in terms of time and

money, is the formal proving that the implementation is

functionally correct i.e. final behavior is consistent with the

requirements.

 Program testing used as a validation process is far from

being a complete rigorous process, because of the

impossibility of achieving a total cover of all executing

cases. There is incompleteness as a consequence of the lack

of oracles. Oracles generate the expected result of a future

testing session, beforehand and independently of the tested

objects. Testing does not involve any kind of rigorous

exhaustive investigation during the requirement

specification and design phase. Testing always only gives the

operational view of the system under construction.

 The CMS system should eventually be tested, but testing

is the routine evaluation of the implementation process. The

important part is the correct-by-construction approach based

on formal models. Therefore the formal specification and

proving is the fundamental phase of the construction; and in

this phase most of the validation and proving is done well

before the implementation of the final system [1].

IV. EVENT-B

 Event-B [1] [2] is a formal method for constructing and

validating a precise, accurate, rigorous model of a system.

This model is gradually refined into a more detailed model

with the help of a number of refinement levels.

 The Event-B notation is based on set theory; it formally

models the system centered around abstract machines; it uses

the principle of refinement to represent the system at

different abstraction levels; it formally verifies consistency

between these refinement levels by using mathematical

proofs. Event-B can be used for the construction of complex

discrete systems. It models system in a discrete fashion. The

behavior of a CMS model is continuous; the systems operate

most of the time in a discrete fashion. The CMS behavior can

be abstracted by a succession of states. In reactive systems,

transitions are occurring concurrently and rapidly, resulting

into large number of concurrent changes occurring at a very

high frequency. Despite a high number and frequency of

changes, such systems are intrinsically discrete. They are

also called transition systems.

 Event-B involves modeling and formal reasoning by

constructing a mathematical model which will be analyzed

by mathematical proofs. The initial model of the CMS

specifies the properties that the system must fulfill. Modeling

is accompanied by reasoning. Model of a program also

contains proofs that are related to the properties of the

program. The challenge is to incorporate formal models in

the analysis and design of CMS and validate the correctness

properties.

 CMS is complex and it is made up of many parts

interacting components in a dynamic environment that

continuously evolves. It requires a high degree of

correctness. Complex models are built by the method of step-

wise refinement i.e. a model is built by successive

refinements of an original simple machine carefully

transforming it into more concrete machine. An Event-B

model consists of contexts and machines.

• A Context specifies the static parts of the model. It

contains sets, constants, axioms, and theorems.

• A Machine specifies the dynamic components of the

model. It has a state, defined variables. A variable is

specified by mathematical objects i.e. sets, binary

relations, functions, numbers etc. A variable is

constrained by an invariant. Invariants are specified to

hold whenever variable values change.

 In order to design the CMS a discrete model is made of

the real system; this model is designed at a certain level of

abstraction; then periodically this discrete model is detailed

with the help of number of refinements. This discrete

dynamic model constitutes a kind of state transition machine.

The model consists of a number of states, and transitions that

are triggered under certain circumstances. These transitions

are called "events", and are an integral part of Event-B. Each

event is composed of a guard and an action. "The guard is a

predicate built on the variables and state constants. It

specifies the condition under which the event may occur. An

event may be executed only when its guard holds. The action,

signifies the way in which state variables evolve when the

event occurs. An event has parameters which can be used to

model array of events or communication channel in the

composition of machines. Events have guards which are

conditions that must be true when an event should execute.

When the guards of more than one events are true at the same

time, then one of the events is executed, this choice is made

in a non-deterministic fashion" [1]. Two events cannot occur

simultaneously. The execution is as follows: "When no event

Bahria University Journal of Information & Communication Technologies Vol. 10, Issue II, December 2017

Page 3 ISSN – 1999-4974

guards are true, then the model execution stops; the model

has deadlocked. When some event guards are true, then one

of the corresponding events occurs and the state is modified

accordingly; subsequently, the guards are checked again, and

so on. When only one guard is true at all times, the model is

said to be deterministic. It’s not mandatory for a model to

eventually finish. Most of the systems never deadlock; they

run forever" [1].

D. Formal Reasoning

 There are two kinds of discrete model properties.

1. Invariant property are proven about models and

ultimately about real systems. "An invariant is a

condition on the state variables that must hold

permanently. The invariant must hold under the guard of

each event" [1].

2. There are reasoning by conditions called modalities

which do not hold permanently. A special form of

modality is reach-ability.

E. Managing the complexity of closed models

 A model built in Event-B specifies the controller of the

system as well as the environment within which the

controller works. A closed model specifies the actions and

reactions taking place in the controller and environment. The

model of the controller is inserted within the model of an

environment. The transitions are of two types: those related

with the environment and those related with the controller.

The communication between these two entities are also

modeled. The number of variables describing the state of

such a system is also large. This complexity is managed by

using three fundamental concepts of refinement,

decomposition, and generic instantiation. These concepts are

linked together. A CMS model is refined to later decompose

it, and, it is decomposed further to refine it. Finally, as a

result of a number of refinements and decompositions a

detailed model of the system is developed which can then be

instantiated.

F. Refinement

 Refinement builds a model gradually by making it more

and more precise. An initial model of the CMS representing

all components is not built on the sudden once and for all. It

is built gradually in the form of a number of refinements and

abstractions. A sequence of embedded models is constructed,

each embedded model is a refinement of the previous one.

G. Decomposition

 The process of decomposition reduces complexity. A

single model is divided into a number of component models

in a systematic way.

H. Rodin

 Rodin [2] [9] platform is an Eclipse-based Integrated

Development Environment (IDE) for Event-B [1] that

provides construct for the implementation of refinement and

mathematical proofs. It is the implementation platform of

Event-B; it is founded on the mathematical concepts of set

theory, predicate logic, relations, and functions. It integrates

modeling as well as exhaustive proving. It has made a large

contribution in making theorem proving a practical tool for

software verification and validation. It implements

techniques used in programming, formal modeling to formal

verifications. Instead of compilation, Rodin is centered on

proof obligation generation and automatically discharging

trivial proof obligations. It analyzes, validates and reasons

about CMS models. ProB [10] is a model checker for Event-

B language that can be integrated in Event-B.

V. THE PROPOSED SYSTEM: CAMPUS

MANAGEMENT SYSTEM

 A CMS is formally modeled and validated. This system

manages the teachers, students, programs, and courses

offered in the Department of Computer Science & IT, The

Islamia University of Bahawalpur. This proposed CMS has

a mathematical foundation, and is proven by the automated

Fig. 1 Block diagram of the proposed CMS approach

Bahria University Journal of Information & Communication Technologies Vol. 10, Issue II, December 2017

Page 4 ISSN – 1999-4974

proof obligations of RODIN. This modeling and proving

using formal models and correct-by-construction ensures

correctness. The software engineering principles of

abstraction and refinement are used multiple times until the

system refines into the required abstraction level (i.e.

detailed specification level).

D. Context_0

 Context_0 designates the zero level context. It specifies

the global level static parts of the model. The carrier sets

specifies the static parts of the system. In CMS the carrier

sets are of the offered courses, the degree programs, teachers,

students, administration, computers, data, and records of all

components of the system. The constants of a context do not

change. The constants of the system as well as their

description is presented below in table. The constants and

carrier sets are used to write axioms, that are the most

important part of a context.

Carrier Sets:

COURSES

PROGRAMS

TEACHER

STUDENT

ADMIN

COMPUTERS

DATA

RECORD

Constants:

Admin /// Administrator of the CMS

 /// (all Privileges)

Teacher /// Teacher access privileges

Student /// Student access privileges

max_c /// Maximum no. of courses that can

be

 ///offered

 no_stds /// Number of Students

 min_tchrs /// Minimum number of Teachers

 no_cmptrs /// Number of Computers

 Courses /// Courses offered

 The axioms are statements that are considered to be true.

The elementary fundamental part of any model are the

axioms. The machines use these axioms. The axioms of the

CMS are defined as follows.

Axioms:

 axm1:Admin ∈ ADMIN

 axm2: Teacher ∈ TEACHER

 axm3: Student ∈ STUDENT

 // There are a finite number of users of CMS

 axm4: finite(TEACHER)

 // There are a finite number of programs offered in CMS

 axm5: finite(PROGRAMS)

 // There are a finite number of courses in all programs

 axm6: finite(COURSES)

 axm7: max_c ≤ card(COURSES)

 // Minimum number of teachers is a Natural number

 axm8: min_tchrs ∈ ℕ

 // There is minimum 1:30 Teacher to Student ratio

 axm9: min_tchrs > no_stds÷30

 axm10: finite(COMPUTERS)

 axm11: no_cmptrs = card(COMPUTERS)

 axm12: Courses ∈ COURSES

 axm13: finite(DATA)

E. Context_1

 Context_1 is the refinement of the Context_0. It

highlights those carrier sets and constants that are the

extension of Context_0. Two new carrier sets i.e. USER and

OBJECT are added into the system. The carrier set USER

specifies the users of the CMS. A user can be administrator,

teacher or student. The carrier set OBJECT specifies an

object can be a data object or a classification object.

Extends:

 Context_0
Carrier Sets:

USER

OBJECT

Constants:

LEVEL

Axioms:

/// Each object is classified on a scale starting from 1 and ending

/// at 10.
/// The clearance level of each User of the system is also

/// classified on a scale between 1 and 10.
axm1: LEVEL = 1..10

F. Machine_0

 A machine specifies and defines the dynamic properties

(i.e. behavior) of the system. Machine_0 defines the first

abstraction level that highlights the major functionalities of

the proposed CMS.

1) Variables

Variables:

 record

 student

 teacher

 admin

Invariants:
inv1: student ⊆ STUDENT
inv2: record ∈ student → DATA
inv3: teacher ⊆ TEACHER
inv4: admin ⊆ ADMIN

G. Events

1) Add Student Record

 It models the addition of a new student record into the

CMS. When a student gets admission, the his/her record is

added into the CMS.

INITIALISATION:

Actions:

// Initial values are

// NULL
act1: record ≔∅
act2: student ≔∅
act3: teacher ≔∅

act4: admin ≔∅

Add_StudentRecord:

Any: st

 st_record

Where: (Guards)
 grd1: st ∈ STUDENT
 grd2: st_record ∈ DATA
 grd3:

 record ∉ student → DATA

Then: (Actions)
 act1:

record ≔

 record ∪ {st ↦ st_record}

2) Check Student Record and Modify Student Record

 The event Check_StudentRecord verifies if the student

record is present in the CMS. The event

Modify_StudentRecord changes or modifies the student

record.

Check_StudentRecord:

Any: st

 st_record

Where: (Guards)
 grd1: st ∈ STUDENT

Modify_StudentRecord:

Any: st

 st_data

Where: (Guards)
 grd1: st ∈ dom(record)

Bahria University Journal of Information & Communication Technologies Vol. 10, Issue II, December 2017

Page 5 ISSN – 1999-4974

 grd2:

 st_record ⊆ record
 grd3: st_record ≠ ∅

 grd2: st_data ∈ DATA
 grd3: st_data ∈∅

Then:

act1:

record ≔ record {st ↦ st_data}

3) Who

Who:

Any: data

 result

Where: (Guards)

 grd1: data ∈ DATA

 grd2: result = dom(record ▷ {data})

H. Machine_1

1) Variables

Variables:
object // Each object of the database
user // User of the Campus Management System (CMS)
odata // Each object in database has an object data

component
class // Class of the user
clear // Clearance level of each user

2) Invariants

Invariants:
inv1: object ⊆ OBJECT

inv2: user ⊆ USER

inv3: odata ∈ object → DATA

inv4: class ∈ object → LEVEL

inv5: clear ∈ user → LEVEL

I. Events

1) Add User

INITIALIZATION:

Actions:

/// Initialization:
/// Initial values are

/// NULL
 act1: object ≔∅
 act2: user ≔∅
 act3: odata ≔∅
 act4: class ≔∅
 act5: clear ≔∅

Add_User:

Any: u

 c

Where: (Guards)
 grd1: u ∈ USER
 /// The new user must not already

/// exist
 grd2: u ∉ user
 grd3: c ∈ LEVEL
 grd4: c ∈∅

Then: (Actions)

/// The initial clearance level of the ///

new user.
 act1: user ≔ user ∪ {u}

 act2: clear(u) ≔ c

2) Add Object

Add_Object:

Any: obj

 data

 cls

Where: (Guards)

 grd1: obj ∈ OBJECT

 /// The new object must not already exist

 grd2: obj ∉ object

 grd3: data ∈ DATA

 grd4: cls ∈ LEVEL

 grd5: odata ∈∅

Then: (Actions)

 act1: object ≔ object ∪ {obj}

 act2: odata(obj) ≔ data

 act3: class(obj) ≔ cls

3) Read

Read:

Any: usr

 obj

 rslt

Where: (Guards)
 grd1: usr ∈ user /// The user must exist
 grd2: obj ∈ object /// The object must exist
 /// A user can only read objects whose classification is less
/// than the user's clearance level.

 grd3: clear(usr) ≥ class(obj)
 /// The odata associated with the object
 grd4: result = odata(obj)

4) Write

Write:

This operation overwrites the data value associated with the

object with a new value.

Any: usr

 obj

 data

Where: (Guards)

 grd1: usr ∈ USER
 grd2: obj ∈ OBJECT
 grd3: usr ∈∅
/// A user can only write objects whose classification less

/// than the user's clearance level
 grd4: clear(usr) ≥ class(obj)
 grd5: clear(usr) ∈∅
 grd6: class(obj) ∈∅
 grd7: data ∈ DATA
 /// initially odata is empty
 grd8: odata ∈∅
 grd9: class(obj) ∉∅

Then: (Actions)
 act1: odata(obj) ≔ d

5) Change class

Change_Class:

It ensures constraints on the user who is changing the object

classification.

Any: obj

 cls

 usr

Where: (Guards)
 grd1: obj ∈ object
 grd2: cls ∈ LEVEL
 grd3: cls ∈ ∅
 /// A user can only write objects whose classification is less

/// than the user's clearance level.
 grd4: clear(usr) ≥ class(obj)
 grd5: clear(usr) ≥ cls
 grd6: class ∈ ∅

Then: (Actions)
 act1: class(obj) ≔ cls

Bahria University Journal of Information & Communication Technologies Vol. 10, Issue II, December 2017

Page 6 ISSN – 1999-4974

6) Change Clear

Change_Clear:

This event provides constraints on the user who is changing

the object classification.

Any: usr

 any

 cls

Where: (Guards)
 grd1: usr ∈ USER
 grd2: any ∈ USER
 grd3: any ∈ ∅
 grd4: clear(any) ≥ clear(usr)
 grd5: clear(any) ≥ cls
 grd6: cls ∈ LEVEL
 grd7: clear ∈ ∅

Then: (Actions)
 act1: clear(usr) ≔ cls

7) Remove User

Remove_User:

Any: usr

Where: (Guards)

grd1: usr ∈ USER

grd2: clear ∈∅
Then: (Actions)

act1: user ≔ user ∖ {usr}

act2: clear ≔ {usr} ⩤ clear

8) Remove Object

Remove_Object:

Any: obj

Where: (Guards)

grd1: obj ∈ object

grd2: odata ∈ ∅
Then: (Actions)

act1: user ≔ user ∖ {usr}

act2: clear ≔ {usr} ⩤ clear

act3: odata ≔ {obj} ⩤ odata

VI. CONTRIBUTIONS

In this work our contributions are:

 A development approach based on the fundamental

software engineering principle of correct-by-

construction, following the underlying principles of

abstraction and refinement.

 The modeling and formal proving of a formal model of

the CMS.

 The mathematical proofs of the correctness properties of

the CMS.

 Periodic refinement and abstractions of the CMS.

Starting from an abstract level and ending into a detailed

refined model. This model can further be refined in the

form of a number of refinement layers.

VII. CONCLUSION AND FUTURE WORK

 The formal modeling and proving of CMS allows

exhaustive investigation of the system properties. A

complete exhaustive formal model of the CMS has a number

of abstraction layers, starting from very abstract concepts

that are step-wise refined into detailed concrete concepts.

This detail model presents an accurate, precise, exhaustive

and formally correct model of the system. In this paper the

proposed CMS has two abstraction layers i.e. layer-zero and

layer-one. The future work is the automated generation of

UML-B diagrams of the proposed CMS. These diagrams

would provide an exhaustive state space graphs showing all

possible states as well as deadlock states. Methodologies

consisting of formal modeling and implementation

exhaustively specify the system and therefore subsequently

ensure high levels of correctness.

REFERENCES

[1] Jean-Raymond Abrial, Modeling in Event-B System and

Software Engineering.: Cambridge University Press, 2010.

[2] Jean-Raymond Abrial et al., "Rodin: An Open Toolset for

Modelling and Reasoning in Event-B," International Journal on

Software Tools for Technology Transfer (STTT), vol. 12, no.

06, pp. 447-466, November 2010.

[3] Lili Xu and Hong Zhang, "Formal Verification of Software

Safety Criteria Using Event-B," in International Conference on

Reliability, Maintainability and Safety (ICRMS), 2014, pp.

342-347.

[4] Fabio Levy Siqueira, Thiago C. de Sousa, and Paulo S. Muniz

Silva, "Using BDD and SBVR to refine business goals into an

Event-B model: a research idea," in IEEE/ACM 5th

International FME Workshop on Formal Methods in Software

Engineering (FormaliSE), 2017, pp. 31-36.

[5] Dieu Huong Vu, Anh Hoang Truong, Yuki Chiba, and Toshiaki

Aoki, "Automated testing reactive systems from Event-B

model," in 4th NAFOSTED Conference on Information and

Computer Science, 2017, pp. 207-212.

[6] Yousra Ben Daly Hlaoui, Ahlem Ben Younes, and Leila Jemni

Ben Ayed, "From Sequence Diagrams to Event B: A

Specification and Verification Approach of Flexible Workflow

Applications of Cloud Services Based on Meta-model

Transformation," in IEEE 41st Annual Computer Software and

Applications Conference, 2017, pp. 187-192.

[7] Nestor Catano, "An Empirical Study on Teaching Formal

Methods to Millennials," in IEEE/ACM 1st International

Workshop on Software Engineering Curricula for Millennials

(SECM), 2017, pp. 3-8.

[8] Guillaume Babin, Yamine Ait-Ameur, and Marc Pantel, "Web

Service Compensation at Runtime: Formal Modeling and

Verification Using the Event-B Refinement and Proof Based

Formal Method," IEEE TRANSACTIONS ON SERVICES

COMPUTING, vol. 10, no. 1, pp. 107-120, January/February

2017.

[9] Michael Jastram and Michael Butler, Rodin User's Handbook:

Covers Rodin V.2.8. USA: CreateSpace Independent

Publishing Platform, 2014.

[10] M. Leuschel and M. Butler, "ProB: A Model Checker for B,"

in Proceedings FME 2003, Pisa, Italy, 2003, pp. 855-874.

