
Bahria University Journal of Information & Communication Technologies Vol. 8, Issue 1(Special Issue), April 2015

Page 98 ISSN – 1999-4974

Abstract—This paper presents the parallel computation of
numerical solution of 3D linear PDEs discretized by using the
Finite Difference Method (FDM). The parallel computation of
numerical solution is carried out by two different solution
methods. First, a typical discretized PDE is expressed as an
implicit function of unknowns that lead to a system of linear
algebraic equations represented in standard matrix form as
AX=B. Next, the discretized PDE is explicitly defined for the
grid points lying on the computational domain. Both the
implicit and explicit forms of the problem are parallelized by
using data parallelism technique. The main objective of this
study is to analyze the computational time (sec) and memory
(Mb) requirements for the implicit (matrix based) and explicit
(matrix free) methods. For the testing and implementation
purpose a typical 3D Poisson’s equation with Dirichlet
boundary conditions is used. The parallel methods are
executed on MATLAB parallel computing environment. The
results revealed that the implicit solution method uses huge
amount of computer memory than the explicit approach. Also,
the parallel computational time is higher in former than later.
This concludes that the explicit method offers good
performance as compared to implicit method implemented on
parallel system.

Index Terms—parallel computing, numerical solution of
PDEs, finite difference method, implicit and explicit methods.

I. INTRODUCTION
 Linear Partial Differential Equations (PDEs) are
extensively used to simulate many real world problems in
various fields of science, engineering and technology. The
Poisson's equation, Laplace's equation, wave equation, heat
equation, Helmholtz equation and Klein–Gordon equation
are some of the well- known examples of linear PDEs. To
solve the problems represented in terms of linear PDEs the
different analytical and numerical methods have been used.
However, the numerical methods are preferred than the
analytical methods because they can be efficiently
implemented on computers and use less storage memory
than the analytical methods [1]. Among the different
numerical methods the finite difference method (FDM) is
commonly used to solve the linear PDEs due to its
simplicity and ease of implementation [2-4]. The finite
difference discretization schemes often come out as implicit
or explicit functions of the values of dependent variable

related to a given PDE. In an implicit scheme, the
computation of the values of dependent variable are defined
by a set of algebraic linear equations expressed in matrix
form and solved by any iterative method. Whereas, in
explicit scheme the unknown values of dependent variables
are directly computed in terms of known values. The
solution process of explicit scheme is repeated iteratively
for each unknown. Often, it is possible to obtain implicit
scheme from given explicit scheme and vice versa.

 In practice, most of the problems formulated by using
linear PDEs are attempted to solve by FDM exist in three
dimensions (3D) and in large scales. Consequently, require
high computing efforts. Even some times it becomes quite
difficult to achieve the numerical solution on sequential
computers with limited resources. In such conditions, the
parallelization of the usual sequential algorithms provides
the benefits of High Performance Computing (HPC) and
reduces computational complexity. The parallelism may be
achieved by the utilization of different computing
architectures such as multi-core systems, GPUs, clusters of
sequential computers, remote clusters, etc. However, before
using any computing architecture the art of parallelization
of sequential algorithms is considered to be one of the most
influential steps towards the HPC.

 This study is devoted to the parallel computation of
numerical solution algorithms arising from the explicit and
implicit finite difference discretization of linear PDEs. The
paper begins with the Introduction Section providing the
motivation for the research. Next Section presents the brief
background of some related works and highlights the main
objective of the current study. The methodology is
presented in Section-III, where a typical 3D linear PDE is
discretized using FDM. The parallelization and
implementation of solution algorithms based on implicit
and explicit FDM is addressed. Section-IV exhibits the
numerical results and compares the parallel performance of
implicit and explicit FDM in terms of computational time
and memory requirements. Finally, Section-V draws
conclusion and offers some directions for future work.

II. BACKGROUND
 For the computationally intensive problems solved by
FDM the large number of unknowns is computed on the
parallel systems. The parallelization of FDM is based on the
choice of the implicit or explicit solution schemes. In this
context, many studies can be found in literature. For
example, [5-9] and [10-16] used implicit and explicit finite
difference schemes respectively to solve 1D, 2D and 3D

Parallel Numerical Solution of Linear PDEs Using
Implicit and Explicit Finite Difference Methods

Shakeel Ahmed Kamboh, Jane Labadin, Khuda Bux Amur, Muhammad Afzal Soomro, and Syed
Muhammad Saeed Ahmed

Shakeel Ahmed Kamboh, Khuda Bux Amur, Muhammad Afzal
Soomro, Muhammad Saeed Ahmed Syed and Jane Labadin,
Department of Mathematics and Statistics, Quaid-e-Awam University
of Engineering, Science and Technology, Nawabshah, Pakistan
 Email: shakeel.maths@yahoo.com

Bahria University Journal of Information & Communication Technologies Vol. 8, Issue 1(Special Issue), April 2015

Page 99 ISSN – 1999-4974

linear PDEs in parallel. They used different parallel
computing architectures and parallel programming
languages to solve the large scale problems in fluid flow,
electromagnetism, weather and climate modeling, etc. Most
of the parallel implicit and explicit schemes have been
implemented independently but their comparison is rarely
found in literature. Also, their implementation is often done
on expensive parallel architectures using FORTRAN, C,
C++ and CUDA. However, the MATALB provides more
flexibility to implement the parallel applications on
parallel/distributed computing environment. Therefore, this
study is aimed at the parallelization and implemetation of
implicit and explicit finite difference methods on easily
available architectures using MATLAB. The main
objective is to investigate the storage memory (Mb)
requirements and the computing time (sec) on parallel
system for such numerical solution schemes.

III. METHODOLOGY
 The main objective of this study is to investigate the
memory (Mb) requirements and the computing time (sec)
on parallel systems for implicit and explicit solution
schemes of linear PDEs. Consequently, for the testing and
implementation purpose a typical linear PDE with Dirchilet
boundary conditions called Poisson’s equation is chosen.
This equation is widely used to simulate various physical
phenomena. Yet, the methodology steps to be presented
may also be used for other kinds of linear PDEs with minor
changes. The general 3D Poisson’s equation in Cartesian
coordinates is given as follows:

 ,
(1)

where u is the dependent variable representing any physical
phenomenon, (x, y, z) are the space coordinates and f is the
given forcing function. It is considered that the Eq. (1) is
applied to simulate u numerically with given initial and
boundary conditions imposed on the computational domain
D as shown in Fig.1.

To obtain the numerical solution by FDM Eq. (1) is
discretized by using 7-point central finite difference scheme
and is expressed as given below,

 (2)

where i=1, 2,…, m+1, j=1, 2, …, n+1 and k=1, 2, …, s+1
are the indices of the grid points and mxxh om /)(1  ,

nyyh om /)(2  and szzh om /)(3  are the
increments along x, y, and z directions respectively. While

xrf cGm . , yrf cGn . , and zrf cGs . are the total
number of finite difference cells with initial number of cells

xc , yc , and zc along x, y and z axis respectively, refined

by a grid refinement factor rfG . A schematic of discretized

computational domain with 10 zyx ccc and the

2rfG is illustrated by Fig. 2. Note that for the current
problem the computational domain D is composed of

)1)(1)(1( snmGp grid points. Where

)1)(1)(1( snmN are the unknown interior points
and NGK p  are the known boundary points at outer
edges of the domain.

Fig. 1. Computational domain D with boundary conditions.

Fig. 2. Schematic of discretized computational domain (3D mesh) with

10 zyx ccc and 2rfG .

 To come up with an implicit or an explicit scheme Eq.
(2) is further simplified and arranged as;

 (3)

or Eq. (3) is divided by c1 to normalize the constants, thus
we have;

(4)

where,

),,(),,(),,(),,(
2

2

2

2

2

2

zyxf
z

zyxu
y

zyxu
x

zyxu
















,
222

,,2
3

1,,,,1,,
2
2

,1,,,,1,
2

1

,,1,,,,1
kji

kjikjikjikjikjikjikjikjikji f
h

uuu
h

uuu
h

uuu








 

,,,51,,41,,4,1,3,1,3,,12,,12,,1 kjikjikjikjikjikjikjikji fcucucucucucucuc  

,,,41,,31,,3,1,2,1,2,,11,,11,,0 kjikjikjikjikjikjikjikji fauauauauauauaua  

Bahria University Journal of Information & Communication Technologies Vol. 8, Issue 1(Special Issue), April 2015

Page 100 ISSN – 1999-4974

        

     

./,/
,/,/,1/

,,,

,,2

154143

132121110

2
3215

2
214

2
313

2
322

2
32

2
31

2
211

ccacca
ccaccacca
hhhchhchhc

hhchhhhhhc









Eq. (4) is the implicit finite difference scheme and is
considered as a system of linear equations in N unknown
values of u. This system can be transformed into standard
matrix form as AX=B. Since the problem in hand is three
dimensional and contains N unknowns for specific Grf. To
transform 3D data points into a 2D matrix of order NN 
the unknown interior points are arranged into a natural
linear order and then reshaped into a coefficient matrix A, a
column vector X and the right hand side column vector B as
given in the following matrix equation;

 ,
(5)

 In Eq. (5) the coefficient matrix A is diagonally
dominant thus the system can be solved iteratively.
However, the implicit scheme requires much matrix
manipulation. Therefore, it is worth to compute all
unknowns directly without using matrix form. It can be
done by defining ui,j,k explicitly; thus by rearranging Eq. (4)
the explicit finite difference scheme is obtained as;

 (6)

Eq. (6) can be solved iteratively; thus for each of the
iterations  the iterative explicit solution scheme is
expressed as;

(7)

 In many practical problems the numerical solution of the
above schemes is required at fine meshes because of the
numerical accuracy or computation at very small
increments. Though, refined meshes make the problem

computationally intensive in terms of processing time. In
order to reduce computational complexity such problems
need to parallelize. The following sections demonstrate the
parallelization of the above implicit and explicit schemes to
be solved by perfectly parallel Jacobi iterations.

A. Parallelization of implicit scheme
Refering to Eq. (5) the sequential version of Jacobi

algorithm is defined by the following formula;

)(11 





N

ij
jiji

ii
i xab

a
x  .

(8)

This algorithm is perfectly parallel and can be
parallelized by using the data parallelism technique [17].
Only few important steps are required to parallelize Eq. (8)
since all the solution values in any iteration depend
completely on the values of preceding iteration. Thus the
parallel process can be run independently on all the parallel
workers (processors). The most significant step requires the
availability of initial solution vector on all workers. To
achieve this goal the mpi gather need to apply. For the sake
of brevity the important steps are listed as below:

B. Parallelization of explicit FDM
In contrast to matrix based Jacobi algorithm in the explict

Jacobi algorithm the solution at any interior point depends
on its six neighboring points. Therefore, the parallelization
of explicit method requires more steps. Referring to Eq. (7)
the most important steps involve the domain partitioning
and message paasing to exchange the neighboring points.
The domain D, can be partitioned into subdomains along
any axis. A schematic of 1-dimensional domain partitioning
of the present problem is illustrated in Fig. 3. After the
domain is partitioned and distributed to parallel workers the

Step 1: Partition the matrices A, X, B and the column
index j into P sub-matrices and define their local part
as aL, xL, bL and jL respectively.

Step 2: Set the initial solution vector 00 x , and the
error tolerance  .

Step 3: Set the iterations  then compute the solution
vector locally by the equivalent parallel formula as;

)(1
0

1 





N

ij
jjiiL

ji
iL

L

LL
LL

L
xab

a
x  (9)

Step 4: Gather the local solutions Lx from each worker
and define it by variable 1x .

Step 5: Check the convergence; if )max(01 xx
then stop the process, otherwise continue.
Step 6: Set 10 xx  and repeat the steps from 3 to 5.

,
)()()(

0

,,41,,1,,3,1,,1,2,,1,,11
,, a

fauuauuauua
u kjikjikjikjikjikjikji

kji





.
)()()(

0

,,41,,1,,3,1,,1,2,,1,,11
,,
1

a
fauuauuauua

u kjikjikjikjikjikjikji
kji









Bahria University Journal of Information & Communication Technologies Vol. 8, Issue 1(Special Issue), April 2015

Page 101 ISSN – 1999-4974

neighboring data points between any two workers need to
exchange in each iteration. Then the computations need to
operate locally on parallel workers.

Fig. 3. A schematic of 1-dimensional domain partitioning along x-axis

distributed to P=4 workers.

The major steps required for the parallelization of
explicit scheme are listed below:

C. Implementation of parallel implicit and explicit FDM

 Both the implicit and explicit solution schemes are
implemented on MATLAB parallel computing
environment using local scheduler with maximum P=8
workers (or labs). A shared memory type parallel
computing system with 2.80 GHz intel processor, 4GB
RAM, 150 GB hard drive and 32-bit Windows 7 operating

system is utilized. The parallel algorithms are tested for
different problem sizes depending on the grid refinement
factor as given in Table I. It is noticeable from the Table I
that the implicit method uses huge amount of memory to
store coefficient matrix A than to store u in explicit method.
As far as the problem size increases the implicit scheme
appears to be impractical in terms of memory requirement.
However, if the matrix A is stored using sparse matrix
function S(A) then less memory is utilized as compared by
defining matrix A in common . Yet, the explicit method
remains dominant over implicit due to very small memory
usage. The algorithms are run for each grid size with
predefined error tolerance of  0.0001. First, the
sequential algorithms are tested on P=1 and then the
corresponding parallel algorithms are run at P=2, 4, 6, and
8 workers. The convergence iterations for both the methods
are noted and are given in Table II. It can be seen that for
each data size the methods converge in about same number
of iterations with small difference. The computational time
(sec) and the data received Dp (Mb) per worker (lab) for
each grid refinement factor is noted. The parallel
performance results of implicit and explicit schemes are
listed in Table III and Table IV respectively.

TABLE I.
PROBLEM SIZE AND THE REQUIRED MEMORY FOR IMPLICIT AND EXPLICIT

SOLUTION METHOD

Problem Size Memory Storage (Mb)

Gr

f
Gp K N Explicit,

u Implicit, A Implicit,
S(A)

1 1331 602 729 0.0102 4.0546 0.0411
2 9261 2402 6859 0.0687 358.9316 0.4029
3 29791 5402 24389 0.2273 4538.1418 5.0943
4 68921 9602 59319 0.5258 26845.8844 30.1359
5 132651 15002 117649 1.0100 105600.6409 118.5424
6 226981 21602 205379 1.7300 321811.9327 361.2511
7 357911 29402 328509 2.7300 823350.2432 924.2547
8 531441 38402 493039 4.0500 1854610.1038 2081.8991
9 753571 48602 704969 5.7500 3791666.3434 4256.3485

10 1030301 30002 970299 7.8600 7182923.5031 8063.2162

TABLE II.
PROBLEM SIZE AND THE ITERATIONS FOR IMPLICIT AND EXPLICIT

CONVERGED SOLUTION

Problem Size Number of Iterations, 

Grf Gp K N Explicit, u Implicit,
u

1 1331 602 729 226 230
2 9261 2402 6859 798 811
3 29791 5402 24389 1649 1661
4 68921 9602 59319 2746 2756
5 132651 15002 117649 4065 4077
6 226981 21602 205379 5587 5599
7 357911 29402 328509 7299 7312
8 531441 38402 493039 9188 9196
9 753571 48602 704969 11242 11261

10 1030301 30002 970299 13452 13464

Step 1: Partition the domain containing u and f along
any axis (say x-axis) and define its local parts as uL
and fL on parallel workers.

Step 2: Set the initial solution array Lu0 and the error
tolerance  .

Step 3: Start the iterations  .

Step 4: Exchange and share the neighborhood data
points of Lu0 then compute the solution locally by the
equivalent parallel formula as;

(9)

Step 5: Obtain the local error

.
Step 6: Find the global error)max(Lg   and check

for convergence, if g  then stop the process,
otherwise continue.
Step 7: Set LL uu 0 and repeat the steps from 3 to 6.

.
)00()00()00(

0

,,41,,1,,3,1,,1,2,,1,,11
,,
1

a

fauuauuauua
u kjiLkjiLkjiLkjiLkjiLkjiLkjiL

kjiL
LLLLLLL









Bahria University Journal of Information & Communication Technologies Vol. 8, Issue 1(Special Issue), April 2015

Page 102 ISSN – 1999-4974

TABLE III.
SEQUENTIAL AND PARALLEL PERFORMANCE USING IMPLICIT

SOLUTION METHOD

Grf
Sequential
Time (sec) Parallel Computing Time (sec)

Dp (Mb)

P=1 P=2 P=4 P=6 P=8
1 25.21 37.82 58.24 133.94 468.79 1.47
2 21.94 30.71 38.39 86.38 280.73 20.82
3 127.03 165.14 180.83 388.78 1166.33 120.76
4 500.22 600.27 510.23 1048.01 2882.02 473.38
5 1694.52 1863.97 1491.17 2833.23 6374.77 1584.24
6 3564.49 3564.49 2762.48 4972.46 9944.91 3270.15
7 9037.63 8585.75 6439.31 11268.79 19720.39 8268.36
8 17091.01 15381.91 10767.33 17766.10 31090.68 15753.5
9 30532.71 25952.81 16869.32 26990.92 44535.02 28194.0
10 49824.94 39859.95 23915.97 35873.95 57398.33 45541.98

TABLE IV.

SEQUENTIAL AND PARALLEL PERFORMANCE USING
EXPLICIT SOLUTION METHOD

Grf
Sequential
Time (sec) Parallel Computing Time (sec)

Dp (Mb)
P=1 P=2 P=4 P=6 P=8

1 0.11 0.58 16.25 38.75 82.50 0.23
2 2.24 3.26 53.83 121.32 207.66 2.75
3 15.93 13.40 116.60 214.47 333.20 12.23
4 70.47 47.19 220.33 460.00 690.66 35.44
5 253.98 141.28 459.44 978.32 1518.88 81.00
6 787.95 338.55 903.61 1710.83 2907.22 159.06
7 1702.00 1173.64 1320.91 2962.72 4141.82 281.31
8 2934.34 1832.00 2125.03 4379.05 6250.06 460.66
9 5015.61 3583.00 4381.36 6144.32 8762.72 711.16
10 9365.14 5231.00 7901.00 8418.45 12802.00 1002.00

IV. RESULTS AND ANALYSIS
This section evaluates the numerical results and the

performance of parallel system tested for the implicit and
explicit finite difference methods. The numerical solution
profiles of dependent variable u and its gradient are shown
in Fig. 4 and Fig 5. respectively. The numerical profiles
appear to be realistic and exhibit the transition of solution
from high values to low values. For more refined
discretization the numerical solution improves
significantly. From the results as given in Table III and
Table IV it can be noted that both the computing time and
data exchange per lab in implicit method is much higher
than the explicit method. It is because of the complexity of
assigning and storing of large number of elements of matrix
A. However, the parallel system scales well for P=2 and
P=4 workers as shown in Fig. 6 and Fig. 7. Speedup in
computing time can be observed for higher Grf. Parallel
explicit method appears best at P=2 while implicit parallel
method scales well at P=4. However, like sequential time
the parallel time in explicit schemes is much better than the

implicit method. Overall behavior of parallel system for
both the methods shows that increasing the number of
workers will not increase the performance of parallel
system on the architecture used in this study. However, it is
assumed that the parallel algorithms may produce better
performance on other distributed memory or GPU type
architectures.

Fig. 4. Numerical solution profiles of u with 10 zyx ccc and

2rfG .

Fig. 5. Gradient profiles of u at each grid point with 10 zyx ccc

and 2rfG .

Fig.6.

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10
Grid Refinement Factor, G_rf

C
om

pu
tin

g
tim

e
(s

ec
)

P=1 P=2 P=4 P=6 P=8

Bahria University Journal of Information & Communication Technologies Vol. 8, Issue 1(Special Issue), April 2015

Page 103 ISSN – 1999-4974

Fig. 6. Sequential (at P=1 worker) and parallel (at P=2, 4,
6, 8) computing time (sec) versus grid refinement factor
using implicit solution method.

Fig.7.

Fig. 7. Sequential (at P=1 worker) and parallel (at P=2, 4,
6, 8) computing time (sec) versus grid refinement factor
using explicit solution method.

 In order to understand the message passing among the
parallel workers the mpi profiles are obtained for both the
methods. A schematic of the message passing profiles
obtained for Grf =1 using parallel implicit and explicit
methods on P=8 local workers are shown in Fig. 8. The
amount of data exchanged among the workers is exhibited
in Fig. 8 (a). Since in the implicit scheme much
communication is required by mpi gather function thus the
red pattern reveals the pair wise comparison of workers and
maximum amount of data received per lab for this function.
Other than red patterns illustrate the amount of data used
during local distribution of matrix A, B and X to all workers.
Similarly, in explicit scheme the each neighboring worker
sends and receives a constant amount of data from its left
and/or right worker simultaneously as shown in Fig. 8 (d).
The non-blocking mpi send and receive functions are
employed for this task. It is revealed that the amount of data
exchanged in implicit scheme is higher than the explicit
scheme. It is because of the reason that in every iteration N
data points are gathered in implicit scheme while (m+1)
(s+1) data points are sent or received by neighboring
workers in explicit scheme where N > (m+1) (s+1).
Moreover, the maximum communication time (sec)
consumed by both the methods during data exchange
process is illustrated by Fig. 8 (b and e). The maximum
communication time in implicit method is about six times
greater than explicit method. The pair wise communication
patterns in explicit method are almost symmetric while the
implicit method shows non-symmetric communication
patterns. Finally, the maximum waiting time (sec) used
during the message passing is also exhibited through Fig. 8
(c and f). Just like the maximum communication time the
maximum waiting time in implicit method is higher than
explicit method. Thus from the comparison of performance
indicators it appears that for the parallel numerical solution
of the problems similar to that is used in this study the

explicit FDM provides better performance as compared to
implicit FDM.

Fig.8.

Fig. 8. The message passing profiles obtained for Grf =1
using parallel implicit and explicit schemes on P=8 local
workers.: (a and d) the maximum data received per lab,
(b and e) maximum communication time (sec) per lab, (c
and f) maximum waiting time (sec) per lab

V. CONCLUSION
The parallel numerical solution of a typical 3D linear

PDE was implemented by using the implicit and explicit
finite difference solution methods. It was investigated that
the implicit solution method uses significantly huge amount
of memory than that of used by explicit solution method.
Also the more data is required to pass among the parallel
workers using implicit method. Consequently, the parallel
performance of explicit method is much better than implicit
method. The parallel system scales well up to P=4 workers
on shared memory architecture. It is expected that the
parallel performance may improve on distributed memory
or GPU type architectures. The paper concludes that the
explicit finite solution schemes are more efficient when
implemented on parallel systems.

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10
Grid Refinement Factor,G_rf

C
om

pu
tin

g
tim

e
(s

ec
)

P=1 P=2 P=4 P=6 P=8

Bahria University Journal of Information & Communication Technologies Vol. 8, Issue 1(Special Issue), April 2015

Page 104 ISSN – 1999-4974

ACKNOWLEDGMENT
 The authors would like to acknowledge the financial
support from Universiti Malaysia Sarawak and the Quaid-
e-Awam University of Engineering Science and
Technology, Nawabshah, Pakistan.

REFERENCES
[1] H. M. Anita. "Numerical Methods for Scientist and Engineers,"

Birkhauser-verlag, 2002.
[2] J. Stoer and R. Bulirsch, "Introduction to Numerical Analysis,"

Springer-Verlag, New York, 2002.
[3] M. .K. Jain, “Numerical Solution of Differential Equations,” New

Age International Ltd., New Delhi, 1984.
[4] G. D. Smith, “Numerical Solutions of Partial Differential Equations:

Finite Difference Methods,” Oxford University Press, New York,
1985.

[5] M. J. Hsieh and R. Luo “Exploring a coarse-grained distributive
strategy for finite-difference Poisson–Boltzmann calculations,” J
Mol Model. 17(8), 2011, pp. 1985–1996.

[6] Y. Lu and C.A Shen, “Domain decomposition finite-difference
method for parallel numerical implementation of time-dependent
Maxwell's equations,” Antennas and Propagation, IEEE
Transactions on, 45, 1997, pp. 556-562.

[7] A. Fijany, D. Weinberger, R. Roosta, S. Gulati, “Massively Parallel
Solution of Poisson Equation on Coarse Grain MIMD, “JPL TRS,
1998, pp. 1-21.

[8] S. H. Zainud Deen, E. Hassan, M. S. Ibrahim, K. H. Awadalla, and
A. Z. Botros, “Electromagnetic scattering using GPU-based finite
difference frequency domain method,” Progress In Electromagnetics
Research B, 16, 2009, pp. 351-369.

[9] Y. Wang, M. Baboulin, J. Dongarra, J. Falcou, Y. Fraigneau and O.
L. Maitre, “A parallel solver for incompressible fluid flows,”
International Conference on Computational Science, ICCS 2013,
pp.1-10.

[10] O. Ceylan and O. Kalenderli, “Parallel Computation of Two
Dimensional Electric Field Distribution Using PETSC,” Lecture
Series on Computer and Computational Sciences, Volume 1, 2004,
pp. 1-4.

[11] M. Vu Pham, F. Plourde and S.D Kim, “Strip Decomposition
Parallelization of Fast Direct Poisson Solver on a 3D Cartesian
Staggered Grid,” International Journal of Mathematical,
Computational, Physical and Quantum Engineering Vol.1 No.3,
2007, pp.183-192.

[12] A. M. Adams1, E. Sifakis and J. Teran, “A parallel multigrid Poisson
solver for fluids simulation on large grids,” Eurographics, ACM
SIGGRAPH Symposium on Computer Animation (2010), pp.1-10.

[13] Q. Xu and W. Wang, “A new parallel iterative algorithm for solving
2D poisson equation,” Vol. 27, Issue 4, 2011, pp.829–853.

[14] T. Tanga, W. Liua and J. M. McDonough, “Parallelization of linear
iterative methods for solving the 3-D pressure Poisson equation using
various programming languages,” Procedia Engineering 61 (2013)
136 – 143.

[15] Bollig, Evan F., Natasha Flyer, and Gordon Erlebacher,"Solution to
PDEs using radial basis function finite-differences (RBF-FD) on
multiple GPUs," Journal of Computational Physics, vol. 231, pp.
7133-7151, 2012.

[16] Gong, Chunye, Weimin Bao, and Guojian Tang, "A parallel
algorithm for the Riesz fractional reaction-diffusion equation with
explicit finite difference method," Fractional Calculus and Applied
Analysis, vol. 16, pp. 654-669, 2013.

[17] A. Margaris, S. Souravlas, and M. Roumeliotis, “Parallel
implementations of the Jacobi linear algebraic system solver,” In
Proceedings of the 3rd Balkan Conference in Informatics, 2007, 161–
172.

http://www.sciencedirect.com/science/article/pii/S1877050913003505
http://www.sciencedirect.com/science/article/pii/S1877050913003505
http://www.sciencedirect.com/science/article/pii/S1877050913003505
http://www.sciencedirect.com/science/article/pii/S1877050913003505
http://www.sciencedirect.com/science/article/pii/S1877050913003505
http://www.sciencedirect.com/science/article/pii/S1877050913003505
http://www.sciencedirect.com/science/article/pii/S1877050913003505

	02. 1_Enhancement of Colour Fundus Images by using Single and Multi-Scale Retinex

