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Abstract—This paper presents the parallel computation of 
numerical solution of 3D linear PDEs discretized by using the 
Finite Difference Method (FDM). The parallel computation of 
numerical solution is carried out by two different solution 
methods. First, a typical discretized PDE is expressed as an 
implicit function of unknowns that lead to a system of linear 
algebraic equations represented in standard matrix form as 
AX=B. Next, the discretized PDE is explicitly defined for the 
grid points lying on the computational domain. Both the 
implicit and explicit forms of the problem are parallelized by 
using data parallelism technique. The main objective of this 
study is to analyze the computational time (sec) and memory 
(Mb) requirements for the implicit (matrix based) and explicit 
(matrix free) methods. For the testing and implementation 
purpose a typical 3D Poisson’s equation with Dirichlet 
boundary conditions is used. The parallel methods are 
executed on MATLAB parallel computing environment. The 
results revealed that the implicit solution method uses huge 
amount of computer memory than the explicit approach. Also, 
the parallel computational time is higher in former than later. 
This concludes that the explicit method offers good 
performance as compared to implicit method implemented on 
parallel system.  
 

Index Terms—parallel computing, numerical solution of 
PDEs, finite difference method, implicit and explicit methods. 
 

I. INTRODUCTION  
 Linear Partial Differential Equations (PDEs) are 
extensively used to simulate many real world problems in 
various fields of science, engineering and technology. The 
Poisson's equation, Laplace's equation, wave equation, heat 
equation, Helmholtz equation and Klein–Gordon equation 
are some of the well- known examples of linear PDEs. To 
solve the problems represented in terms of linear PDEs the 
different analytical and numerical methods have been used. 
However, the numerical methods are preferred than the 
analytical methods because they can be efficiently 
implemented on computers and use less storage memory 
than the analytical methods [1]. Among the different 
numerical methods the finite difference method (FDM) is 
commonly used to solve the linear PDEs due to its 
simplicity and ease of implementation [2-4]. The finite 
difference discretization schemes often come out as implicit 
or explicit functions of the values of dependent variable 

related to a given PDE. In an implicit scheme, the 
computation of the values of dependent variable are defined 
by a set of algebraic linear equations expressed in matrix 
form and solved by any iterative method. Whereas, in 
explicit scheme the unknown values of dependent variables 
are directly computed in terms of known values. The 
solution process of explicit scheme is repeated iteratively 
for each unknown. Often, it is possible to obtain implicit 
scheme from given explicit scheme and vice versa.  
  
 In practice, most of the problems formulated by using 
linear PDEs are attempted to solve by FDM exist in three 
dimensions (3D) and in large scales. Consequently, require 
high computing efforts. Even some times it becomes quite 
difficult to achieve the numerical solution on sequential 
computers with limited resources. In such conditions, the 
parallelization of the usual sequential algorithms provides 
the benefits of High Performance Computing (HPC) and 
reduces computational complexity. The parallelism may be 
achieved by the utilization of different computing 
architectures such as multi-core systems, GPUs, clusters of 
sequential computers, remote clusters, etc. However, before 
using any computing architecture the art of parallelization 
of sequential algorithms is considered to be one of the most 
influential steps towards the HPC.   
  
 This study is devoted to the parallel computation of 
numerical solution algorithms arising from the explicit and 
implicit finite difference discretization of linear PDEs. The 
paper begins with the Introduction Section providing the 
motivation for the research. Next Section presents the brief 
background of some related works and highlights the main 
objective of the current study. The methodology is 
presented in Section-III, where a typical 3D linear PDE is 
discretized using FDM. The parallelization and 
implementation of solution algorithms based on implicit 
and explicit FDM is addressed. Section-IV exhibits the 
numerical results and compares the parallel performance of 
implicit and explicit FDM in terms of computational time 
and memory requirements. Finally, Section-V draws 
conclusion and offers some directions for future work.              

II. BACKGROUND 
 For the computationally intensive problems solved by 
FDM the large number of unknowns is computed on the 
parallel systems. The parallelization of FDM is based on the 
choice of the implicit or explicit solution schemes. In this 
context, many studies can be found in literature. For 
example, [5-9] and [10-16] used implicit and explicit finite 
difference schemes respectively to solve 1D, 2D and 3D 
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linear PDEs in parallel. They used different parallel 
computing architectures and parallel programming 
languages to solve the large scale problems in fluid flow, 
electromagnetism, weather and climate modeling, etc. Most 
of the parallel implicit and explicit schemes have been 
implemented independently but their comparison is rarely 
found in literature. Also, their implementation is often done 
on expensive parallel architectures using FORTRAN, C, 
C++ and CUDA. However, the MATALB provides more 
flexibility to implement the parallel applications on 
parallel/distributed computing environment. Therefore, this 
study is aimed at the parallelization and implemetation of 
implicit and explicit finite difference methods on easily 
available architectures using MATLAB. The main 
objective is to investigate the storage memory (Mb) 
requirements and the computing time (sec)  on parallel 
system for such numerical solution schemes.    

III. METHODOLOGY 
 The main objective of this study is to investigate the 
memory (Mb) requirements and the computing time (sec)  
on parallel systems for implicit and explicit solution 
schemes of linear PDEs. Consequently, for the testing and 
implementation purpose a typical linear PDE with Dirchilet 
boundary conditions called Poisson’s equation is chosen. 
This equation is widely used to simulate various physical 
phenomena. Yet, the methodology steps to be presented 
may also be used for other kinds of linear PDEs with minor 
changes. The general 3D Poisson’s equation in Cartesian 
coordinates is given as follows:  
 
                          , 
(1) 
 
where u is the dependent variable representing any physical 
phenomenon, (x, y, z) are the space coordinates and f is the 
given forcing function. It is considered that the Eq. (1) is 
applied to simulate u numerically with given initial and 
boundary conditions imposed on the computational domain 
D as shown in Fig.1.  

To obtain the numerical solution by FDM Eq. (1) is 
discretized by using 7-point central finite difference scheme 
and is expressed as given below, 

                          
 (2) 

 
where i=1, 2,…,  m+1, j=1, 2, …, n+1 and k=1, 2, …, s+1 
are the indices of the grid points and mxxh om /)(1  , 

nyyh om /)(2   and  szzh om /)(3  are the  
increments along x, y, and z directions respectively. While 

xrf cGm . , yrf cGn . , and zrf cGs .  are the total 
number of finite difference cells with initial number of cells 

xc , yc , and zc  along  x, y and z axis respectively,  refined 

by a grid refinement factor rfG . A schematic of discretized 

computational domain with 10 zyx ccc  and the 

2rfG  is illustrated by Fig. 2. Note that for the current 
problem the computational domain D is composed of 

)1)(1)(1(  snmGp  grid points. Where 

)1)(1)(1(  snmN are the unknown interior points 
and NGK p  are the known boundary points at outer 
edges of the domain.  

 
Fig. 1. Computational domain D with boundary conditions. 

 
Fig. 2. Schematic of discretized computational domain (3D mesh) with

10 zyx ccc  and 2rfG . 

 To come up with an implicit or an explicit scheme Eq. 
(2) is further simplified and arranged as; 
 
                          
 (3) 

or Eq. (3) is divided by c1 to normalize the constants, thus 
we have;  

                              
(4) 
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Eq. (4) is the implicit finite difference scheme and is 
considered as a system of linear equations in N unknown 
values of u. This system can be transformed into standard 
matrix form as AX=B. Since the problem in hand is three 
dimensional and contains N unknowns for specific Grf. To 
transform 3D data points into a 2D matrix of order NN   
the unknown interior points are arranged into a natural 
linear order and then reshaped into a coefficient matrix A, a 
column vector X and the right hand side column vector B as 
given in the following matrix equation;  

 

 

 

 

 

 

                            , 
(5) 

    

 

 

 

 

 

 

 In Eq. (5) the coefficient matrix A is diagonally 
dominant thus the system can be solved iteratively. 
However, the implicit scheme requires much matrix 
manipulation. Therefore, it is worth to compute all 
unknowns directly without using matrix form. It can be 
done by defining ui,j,k explicitly; thus by rearranging Eq. (4) 
the explicit finite difference scheme is obtained as;  
 
                             
 (6)   

Eq. (6) can be solved iteratively; thus for each of the 
iterations  the iterative explicit solution scheme is 
expressed as;    

                              
(7) 

 

 In many practical problems the numerical solution of the 
above schemes is required at fine meshes because of the 
numerical accuracy or computation at very small 
increments. Though, refined meshes make the problem 

computationally intensive in terms of processing time. In 
order to reduce computational complexity such problems 
need to parallelize. The following sections demonstrate the 
parallelization of the above implicit and explicit schemes to 
be solved by perfectly parallel Jacobi iterations.   

  

A. Parallelization of implicit scheme 
Refering to Eq. (5) the sequential version of Jacobi 

algorithm is defined by the following formula;  

  )(11 





N

ij
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a
x       .               

(8) 

This algorithm is perfectly parallel and can be 
parallelized by using the data parallelism technique [17]. 
Only few important steps are required to parallelize Eq. (8) 
since all the solution values in any iteration depend 
completely on the values of preceding iteration. Thus the 
parallel process can be run independently on all the parallel 
workers (processors). The most significant step requires the 
availability of initial solution vector on all workers. To 
achieve this goal the mpi gather need to apply.  For the sake 
of brevity the important steps are listed as below: 
 

  

B. Parallelization of explicit FDM 
In contrast to matrix based Jacobi algorithm in the explict 

Jacobi algorithm the solution at any interior point depends 
on its six neighboring points. Therefore, the parallelization 
of explicit method requires more steps. Referring to Eq. (7) 
the most important steps involve the domain partitioning 
and message paasing to exchange the neighboring points. 
The domain D, can be partitioned into subdomains along 
any axis. A schematic of 1-dimensional domain partitioning 
of the present problem is illustrated in Fig. 3. After the 
domain is partitioned and distributed to parallel workers the 

Step 1: Partition the matrices A, X, B and the column 
index j into P sub-matrices and define their local part 
as aL, xL, bL and jL respectively. 

Step 2: Set the initial solution vector 00 x , and the 
error tolerance  . 

Step 3: Set the iterations  then compute the solution 
vector locally by the equivalent parallel formula as;  
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Step 4: Gather the local solutions Lx  from each worker 
and define it by variable 1x . 

Step 5:  Check the convergence; if  )max( 01 xx  
then stop the process, otherwise continue. 
Step 6: Set 10 xx   and repeat the steps from 3 to 5. 
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neighboring data points between any two workers need to 
exchange in each iteration. Then the computations need to 
operate locally on parallel workers.               

 
Fig. 3. A schematic of 1-dimensional domain partitioning along x-axis 

distributed to P=4 workers. 

 

The major steps required for the parallelization of 
explicit scheme are listed below: 

 
 

 

C. Implementation of parallel implicit and explicit FDM 

 Both the implicit and explicit solution schemes are 
implemented on MATLAB parallel computing 
environment using local scheduler with maximum P=8 
workers (or labs). A shared memory type parallel 
computing system with 2.80 GHz intel processor, 4GB 
RAM, 150 GB hard drive and 32-bit Windows 7 operating 

system is utilized. The parallel algorithms are tested for 
different problem sizes depending on the grid refinement 
factor as given in Table I.  It is noticeable from the Table I 
that the implicit method uses huge amount of memory to 
store coefficient matrix A than to store u in explicit method. 
As far as the problem size increases the implicit scheme 
appears to be impractical in terms of memory requirement. 
However, if the matrix A is stored using sparse matrix 
function S(A) then less memory is utilized as compared by 
defining matrix A in common . Yet, the explicit method 
remains dominant over implicit due to very small memory 
usage. The algorithms are run for each grid size with 
predefined error tolerance of  0.0001. First, the 
sequential algorithms are tested on P=1 and then the 
corresponding parallel algorithms are run at P=2, 4, 6, and 
8 workers. The convergence iterations for both the methods 
are noted and are given in Table II. It can be seen that for 
each data size the methods converge in about same number 
of iterations with small difference. The computational time 
(sec) and the data received Dp (Mb) per worker (lab) for 
each grid refinement factor is noted. The parallel 
performance results of implicit and explicit schemes are 
listed in Table III and Table IV respectively.  
 

TABLE I. 
PROBLEM SIZE AND THE REQUIRED MEMORY FOR IMPLICIT AND EXPLICIT 

SOLUTION METHOD 
 

Problem Size Memory Storage (Mb) 

Gr

f 
Gp K N Explicit, 

u Implicit, A Implicit, 
S(A) 

1 1331 602 729 0.0102 4.0546 0.0411 
2 9261 2402 6859 0.0687 358.9316 0.4029 
3 29791 5402 24389 0.2273 4538.1418 5.0943 
4 68921 9602 59319 0.5258 26845.8844 30.1359 
5 132651 15002 117649 1.0100 105600.6409 118.5424 
6 226981 21602 205379 1.7300 321811.9327 361.2511 
7 357911 29402 328509 2.7300 823350.2432 924.2547 
8 531441 38402 493039 4.0500 1854610.1038 2081.8991 
9 753571 48602 704969 5.7500 3791666.3434 4256.3485 

10 1030301 30002 970299 7.8600 7182923.5031 8063.2162 
 
 

TABLE II. 
PROBLEM SIZE AND THE ITERATIONS FOR IMPLICIT AND EXPLICIT 

CONVERGED SOLUTION 

Problem Size Number of Iterations,   

Grf Gp K N Explicit, u Implicit,  
u 

1 1331 602 729 226 230 
2 9261 2402 6859 798 811 
3 29791 5402 24389 1649 1661 
4 68921 9602 59319 2746 2756 
5 132651 15002 117649 4065 4077 
6 226981 21602 205379 5587 5599 
7 357911 29402 328509 7299 7312 
8 531441 38402 493039 9188 9196 
9 753571 48602 704969 11242 11261 

10 1030301 30002 970299 13452 13464 
 

 

Step 1: Partition the domain containing u and f along 
any axis (say x-axis) and define its local parts as uL 
and fL on parallel workers. 

Step 2: Set the initial solution array Lu0  and the error 
tolerance  .  

Step 3: Start the iterations  .  

Step 4: Exchange and share the neighborhood data 
points of Lu0  then compute the solution locally by the 
equivalent parallel formula as;  

(9) 

Step 5: Obtain the local error

. 
Step 6: Find the global error )max( Lg    and check 

for convergence, if g   then stop the process, 
otherwise continue. 
Step 7: Set LL uu 0  and repeat the steps from 3 to 6. 
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TABLE III. 
SEQUENTIAL AND PARALLEL PERFORMANCE USING IMPLICIT 

SOLUTION METHOD 
 

 

Grf 
Sequential 
Time (sec) Parallel Computing Time (sec) 

Dp (Mb) 

P=1 P=2 P=4 P=6 P=8 
1 25.21 37.82 58.24 133.94 468.79 1.47 
2 21.94 30.71 38.39 86.38 280.73 20.82 
3 127.03 165.14 180.83 388.78 1166.33 120.76 
4 500.22 600.27 510.23 1048.01 2882.02 473.38 
5 1694.52 1863.97 1491.17 2833.23 6374.77 1584.24 
6 3564.49 3564.49 2762.48 4972.46 9944.91 3270.15 
7 9037.63 8585.75 6439.31 11268.79 19720.39 8268.36 
8 17091.01 15381.91 10767.33 17766.10 31090.68 15753.5 
9 30532.71 25952.81 16869.32 26990.92 44535.02 28194.0 
10 49824.94 39859.95 23915.97 35873.95 57398.33 45541.98 

 
TABLE IV. 

SEQUENTIAL AND PARALLEL PERFORMANCE USING 
EXPLICIT SOLUTION METHOD 

 

Grf 
Sequential 
Time (sec) Parallel Computing Time (sec) 

Dp (Mb) 
P=1 P=2 P=4 P=6 P=8 

1 0.11 0.58 16.25 38.75 82.50 0.23 
2 2.24 3.26 53.83 121.32 207.66 2.75 
3 15.93 13.40 116.60 214.47 333.20 12.23 
4 70.47 47.19 220.33 460.00 690.66 35.44 
5 253.98 141.28 459.44 978.32 1518.88 81.00 
6 787.95 338.55 903.61 1710.83 2907.22 159.06 
7 1702.00 1173.64 1320.91 2962.72 4141.82 281.31 
8 2934.34 1832.00 2125.03 4379.05 6250.06 460.66 
9 5015.61 3583.00 4381.36 6144.32 8762.72 711.16 
10 9365.14 5231.00 7901.00 8418.45 12802.00 1002.00 
 

IV. RESULTS AND ANALYSIS 
This section evaluates the numerical results and the 

performance of parallel system tested for the implicit and 
explicit finite difference methods. The numerical solution 
profiles of dependent variable u and its gradient are shown 
in Fig. 4 and Fig 5. respectively. The numerical profiles 
appear to be realistic and exhibit the transition of solution 
from high values to low values. For more refined 
discretization the numerical solution improves 
significantly. From the results as given in Table III and 
Table IV it can be noted that both the computing time and 
data exchange per lab in implicit method is much higher 
than the explicit method. It is because of the complexity of 
assigning and storing of large number of elements of matrix 
A. However, the parallel system scales well for P=2 and 
P=4 workers as shown in Fig. 6 and Fig. 7. Speedup in 
computing time can be observed for higher Grf. Parallel 
explicit method appears best at P=2 while implicit parallel 
method scales well at P=4. However, like sequential time 
the parallel time in explicit schemes is much better than the 

implicit method. Overall behavior of parallel system for 
both the methods shows that increasing the number of 
workers will not increase the performance of parallel 
system on the architecture used in this study. However, it is 
assumed that the parallel algorithms may produce better 
performance on other distributed memory or GPU type 
architectures.  

 
Fig. 4. Numerical solution profiles of u with 10 zyx ccc  and

2rfG . 

 
Fig. 5. Gradient profiles of u at each grid point with 10 zyx ccc  

and 2rfG . 

 
Fig.6. 
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Fig. 6. Sequential (at P=1 worker) and parallel (at P=2, 4, 
6, 8) computing time (sec) versus grid refinement factor 
using implicit solution method. 

 
Fig.7. 

Fig. 7. Sequential (at P=1 worker) and parallel (at P=2, 4, 
6, 8) computing time (sec) versus grid refinement factor 
using explicit solution method. 

 In order to understand the message passing among the 
parallel workers the mpi profiles are obtained for both the 
methods. A schematic of the message passing profiles 
obtained for Grf =1 using parallel implicit and explicit 
methods on P=8 local workers are shown in Fig. 8. The 
amount of data exchanged among the workers is exhibited 
in Fig. 8 (a). Since in the implicit scheme much 
communication is required by mpi gather function thus the 
red pattern reveals the pair wise comparison of workers and 
maximum amount of data received per lab for this function. 
Other than red patterns illustrate the amount of data used 
during local distribution of matrix A, B and X to all workers. 
Similarly, in explicit scheme the each neighboring worker 
sends and receives a constant amount of data from its left 
and/or right worker simultaneously as shown in Fig. 8 (d). 
The non-blocking mpi send and receive functions are 
employed for this task.  It is revealed that the amount of data 
exchanged in implicit scheme is higher than the explicit 
scheme. It is because of the reason that in every iteration N 
data points are gathered in implicit scheme while (m+1) 
(s+1) data points are sent or received by neighboring 
workers in explicit scheme where N > (m+1) (s+1). 
Moreover, the maximum communication time (sec) 
consumed by both the methods during data exchange 
process is illustrated by Fig. 8 (b and e). The maximum 
communication time in implicit method is about six times 
greater than explicit method. The pair wise communication 
patterns in explicit method are almost symmetric while the 
implicit method shows non-symmetric communication 
patterns. Finally, the maximum waiting time (sec) used 
during the message passing is also exhibited through Fig. 8 
(c and f).  Just like the maximum communication time the 
maximum waiting time in implicit method is higher than 
explicit method. Thus from the comparison of performance 
indicators it appears that for the parallel numerical solution 
of the problems similar to that is used in this study the 

explicit FDM provides better performance as compared to 
implicit FDM.  

 
Fig.8. 

Fig. 8. The message passing profiles obtained for Grf =1 
using parallel implicit and explicit schemes on P=8 local 
workers.: (a and d) the maximum data received per lab, 
(b and e) maximum communication time (sec) per lab, (c 
and f) maximum waiting time (sec) per lab 

 

V. CONCLUSION 
The parallel numerical solution of a typical 3D linear 

PDE was implemented by using the implicit and explicit 
finite difference solution methods. It was investigated that 
the implicit solution method uses significantly huge amount 
of memory than that of  used by explicit solution method. 
Also the more data is required to pass among the parallel 
workers using implicit method. Consequently, the parallel 
performance of explicit method is much better than implicit 
method. The parallel system scales well up to P=4 workers 
on shared memory architecture. It is expected that the 
parallel performance may improve on distributed memory 
or GPU type architectures. The paper concludes that the 
explicit finite solution schemes are more efficient when 
implemented on parallel systems.  
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