
Bahria University Journal of Information & Communication Technologies Vol. 8, Issue 1, April 2015

Page 14 ISSN – 1999-4974

Abstract—Modern database management systems are

complex programs which get user queries, translate them in
internal representation necessary for data access and provide
results in best possible way; that is, results which take less
execution-time and consume fewer resources. However, as
the data is increasing at rapid pace, there is always a need of
systems which meet organizational requirements. Better
systems can only be developed if internal working of
(existing) systems is understood very well. This paper
presents a tool that helps in understanding how (high-level)
user queries are translated in internal representation
necessary for data access. Furthermore, the tool also
implements few optimization techniques to produce
alternative execution plans and their corresponding
execution time. Paper also presents a discussion on which
plans are better based on the computational analysis.

Index Terms— SQL, Relational Algebra, Query
Processing, Query Optimization

I. INTRODUCTION

In our everyday life, we deal with databases in one or
another way for e.g., depositing or withdrawing money
using online banking, paying our electricity bills,
purchasing a book online, or searching for historic place
using google.com [1] [2]. Actually, this communication
for intended data is made possible with the help of
database management system (DBMS) software. In
relational database management systems (RDBMs), user
queries usually provided in Structured Query Language
(SQL) are translated in internal representation (i.e.,
relational algebra) necessary for data access [3]. A
subprogram called query parser parses user query for
syntax and semantic errors, translates it into an equivalent
expression in relational algebra, and decomposes it in
query blocks. Relational algebraic expression is then
further analyzed and optimized by a query optimizer (a
subprogram in DBMS package) that generates equivalent
query plans and chooses a best one in terms of execution
time and consumption of resources.

Database management systems are complex programs
responsible for performing all this query processing and
optimization. The pace at which data recording needs are
increasing one can confidently say that future systems will

Nimra Memon, Muhammad Saleem Vighio, Shah Zaman Nizamani,
Adeel Riaz Memon, Umair Ramzan Shaikh, Information Technology
Department, Quaid-e-Awam University of Engineering, Science &
Technology Nawabshah, Pakistan. Niaz Ahmed Memon, Adl. Plant
Manager (Maint:)-III, 600MW Combined Cycle Power Station (CCPS)
Thermal P ower Station (TPS), Genco-II Guddu. Email:
nimramemon88@hotmail.com

be even more complex as they have to deal with
voluminous amounts of data. Therefore, for meeting future
requirements it is very important that existing working of
DBMS software must be understood very well. In this
paper, we present a tool that helps in understanding how
user queries provided in structured query language (SQL)
are translated in internal representation (relational
algebra). Furthermore, for each input query the tool
implements three optimization strategies (simple,
elimination of Cartesian product, push selection) to
produce alternative execution plans and their
corresponding execution time. Based on the produced
results, paper presents discussion on which optimization
strategies are better.

II. LITERATURE REVIEW

Much research has been carried out on query translation
and optimization for e.g., in [3] a detailed discussion on
query processing is provided. Similar research has also
been provided in [4] and [5] which have remained very
useful for the development of the part of our tool which
translates user queries from SQL to relational algebra.
Similar to our work, Bendre M. et. al., in [6] have
developed a tool that translates relational algebraic
expressions to relational calculus (SQL). Our inspiration
came also from the work presented in [6]. However, as
opposed to the translation performed in [6], our tool
performs forward translation i.e., from relational
calculus (SQL) to relational algebra which is the case
with almost all types of database management systems
developed so far. Additionally, our tool provides
connectivity to the databases created in SQL server and
also provides actual query results. The parser in our tool
generates syntactic errors if SQL queries are not well-
formed i.e., either the queries do not follow the allowed
syntax or refer to tables/database which do not exist.
The tool in [6] lacks these key features. The work
provided in [4] has also remained useful for the
development of our tool. In [4] a tool supported translation
is provided from a relevant subset of SQL into relational
algebra. The translation is syntax-directed, with translation
rules associated with grammar productions; each
production corresponds to a particular type of SQL sub-
query. Translator defines the semantics of the SQL
language, and can be used for the proof of equivalence of
SQL queries which are syntactically different.

Nimra Memon, Muhammad Saleem Vighio, Shah Zaman Nizamani, Niaz Ahmed Memon, Adeel Riaz
Memon, Umair Ramzan Shaikh

Analysis of Query Processing and Optimization

Bahria University Journal of Information & Communication Technologies Vol. 8, Issue 1, April 2015

Page 15 ISSN – 1999-4974

For the optimization part of our tool, the work provided
in [7], [8], [9] and [10] provided us strong background
knowledge. In [7] the structure of the optimizer is
presented along with discussion on the main issues
handled by each optimizer module. Chaudhuri S. in [9]
discusses how a query optimizer selects the best execution
plan for a given query. Furthermore, fundamental
requirements for search spaces, accurate cost estimation
technique and best execution plan out of many candidates
plans have also been discussed in detail.

III. ORGANIZATION OF THE PAPER

The rest of the paper is organized as follows: Section IV
gives brief introduction of SQL, relational algebra and
translation of SQL queries into relational algebra. Section
IV also presents optimization strategies that we have
focused on. Section V gives tool details and discusses
experimental results. Finally, section VI concludes the
work and gives suggestions for the future work.

IV. QUERY TRANSLATION AND OPTIMIZATION

A. Structured Query Language
 Structured query language (SQL) is declarative query
language developed for users' comfort that tells the
database what user wants.

 Structure of SQL Query is based on three clauses:

SELECT Column1, Column2, …, Columnn
FROM Table1, Table2, …,Tablen
WHERE Condition

Consider the query which asks to “return the names of
students who earned grade 'B' ”. This query is easily
understood by a person but DBMS requires it to be
represented in a language also understood by the DBMS.
The relational database management systems allow users
to enter queries in SQL. Above query can be represented
in SQL as follows where "Students" and "Enrolled" are
the names of relations:

SELECT Name
FROM Students, Enrolled
WHERE Students.id= Enrolled.id
AND Enrolled.Grade=‘B’

Since SQL queries have been developed for the ease of
users, DBMS translates SQL queries in relational algebra
in order to access the data.

B. Relational Algebra
As opposed to SQL, relational algebra is procedural

language that not only tells the DBMS what user wants
but also tells how to compute the answer. Relational
algebra is based on relations and operators that operate on

relations; see Fig. 1. Most commonly used relational
operators are:

 Select (σ): Returns tuples that satisfy a given
predicate (condition or formula).

 Project (π): Returns attributes listed
 Join (⋈): Returns a filtered cross product of its

arguments.

Fig. 1. Relational operators take one or two relations as input and

produce a resultant relation.

C. SQL to Relational Algebra Translation
 In order to translate a SQL query into relational algebra,
query processor translates each SELECT clause to
Projection (π), FROM clause to table name(s) or their
Cartesian, and WHERE clause to Selection (σ).

 The query mentioned earlier to “return the names of
students who earned grade 'B' ” can be written in
relational algebra as follows:

π Name (σ Students.id = Enrolled.id ˄ Enrolled .Grade = ‘B’ (Students ×
Enrolled))

However, query optimizer produces other equivalent
alternative execution plans implemented in it so that a
better plan in terms of execution time and resources may
be found.

D. Generation of Query Execution Plans
 After the query processor translates given SQL
statement to relational algebra it forwards that expression
to query optimizer which generates various executions
plans representing different orders or combinations of
operators.

There are a number of algebraic laws implemented in
query optimizer for generating equivalent (logical) query
plans. However, following are the most commonly used
techniques that we also consider and implement in our
tool: Simple, Elimination of Cartesian product, and Push
selection.

 Simple Execution Plan

 Query processor generates an equivalent relational
algebraic expression for the input query and forwards it to

Bahria University Journal of Information & Communication Technologies Vol. 8, Issue 1, April 2015

Page 16 ISSN – 1999-4974

the query optimizer. The first algebraic expression
generated by the query processor involves Cartesian
product that we call simple execution plan.

Example 1: return names of students who earned grade
'B'

In SQL it can be represented as:

SELECT Name
FROM Students, Enrolled
WHERE Students.id= Enrolled.id
AND Enrolled.Grade=‘B’

In relational algebra above SQL statement is

represented as: π Name (σ Students.id = Enrolled.id ˄ Enrolled .Grade =

‘B’ (Students × Enrolled))

Fig. 2 shows the algebraic tree of the above expression:

Fig. 2. Simple execution plan involving Cartesian product

 Elimination of Cartesian Product
Cartesian product operations can be combined with

selection operations (and sometimes, with projection
operations) which use data from both relations to form
joins.

After replacing Cartesian product with Join, relational

algebra for the query given in example 1 can be
represented as:

π Name (σ Enrolled .Grade = ‘B’ (students ⋈ Students.id = Enrolled.id

(Enrolled)).

Fig. 3 below gives the operator tree of the above
algebraic expression:

Fig. 3. Execution plan using Join

 Push Selection

Selections can be pushed down the expression tree as
far as they can be pushed. By pushing selection operation
down, we are actually decreasing the size of relations with
which we need to work earlier.

Relational algebra for the query written in example 1
under push selection strategy can be represented as:

π Name (students ⋈ Students.id = Enrolled.id (σ Enrolled .Grade = ‘B’

(Enrolled)))

Fig. 4 below is the operator tree of the above mentioned
relational algebraic expression:

Fig. 4. Pushing selection down the tree

V. TOOL DETAILS AND RESULTS

A. The Tool
The developed tool gets user queries in SQL and

provides equivalent relational algebraic expression.
Furthermore, it generates equivalent execution plans under
simple, join and push-selection strategies and generates
also their execution time. The user interface of the tool has
been developed in C# and the database connectivity has
been provided using SQL Server. Fig. 5 below gives the
interface of the tool:

Bahria University Journal of Information & Communication Technologies Vol. 8, Issue 1, April 2015

Page 17 ISSN – 1999-4974

Fig. 5. User Interface of the tool with database connectivity and query input.

As shown in Fig. 5 the tool allows user to connect with

a database using "Select Database" option on the top left.

After the database name has been provided user can

write SQL query in input box, below the "Selection
Database" option, as shown in Fig. 5.

Once the query has been provided, user presses

"Generate" button and the three algebraic expressions are Fig. 6. Generation of equivalent algebraic expressions and operator trees implementing simple, elimination of Cartesian product with join and
push selection strategies and their execution time.

Bahria University Journal of Information & Communication Technologies Vol. 8, Issue 1, April 2015

Page 18 ISSN – 1999-4974

generated along with their operator trees and execution
times, see Fig. 6.

As shown in Fig. 6 the tool also generates the result of

the computation in “data result” portion at top right. The
execution times are obtained using SQL server data
computation library.

B. Results and Discussion
As shown in Fig. 6. Simple execution plan seems to be

more expensive as it takes around 2.8 milliseconds to get
the result. Push selection on the other hand seems to be
taking less time compared to other two execution plans. In
order to justify our results, let us consider two relations
Student and Enrolled given in TABLE I and TABLE 2
respectively:

TABLE I.
STUDENT

TABLE II. ENROLLED

Now let us consider the query:

SELECT Name
FROM Students, Enrolled
WHERE Students.id= Enrolled.id
AND Enrolled.Grade=‘B’

Under simple execution plan, algebraic expression is:
π Name (σ Students.id = Enrolled.id ˄ Enrolled .Grade = ‘B’ (Students ×
Enrolled))

Operator trees are executed in bottom to top approach
Therefore, first of all the Cartesian between two tables
(Students, Enrolled) is performed, then selection is
performed and finally projection is performed. The result
of (Students × Enrolled) is provided in TABLE III.

TABLE III. RESULT OF CARTESIAN PRODUCT BETWEEN STUDENT AND
ENROLLED

id Name id C.no Grade

11 Ali 11 CS20 A

11 Ali 22 CS21 B

11 Ali 33 CS22 B

22 Ahmed 11 CS20 A

22 Ahmed 22 CS21 B

22 Ahmed 33 CS22 B

33 Saima 11 CS20 A

33 Saima 22 CS21 B

33 Saima 33 CS22 B

After performing Cartesian the next operation

performed is selection on resultant table. The expression:
σStudents.id=Enrolled.id /\ Enrolled. Grade =’B’ computes to
TABLE IV below:

TABLE IV. TABLE OBTAINED AFTER SELECTION OPERATION PERFORMED

ON TABLE III

id Name id C.no Grade

22 Ahmed 22 CS21 B

33 Saima 33 CS22 B

Finally, the last operation performed is projection

operation πName on TABLE IV. The result of the projection
operation is given in TABLE V.

TABLE V. RESULT OBTAINED AFTER ΠNAME

Name

Ahmed

Saima

From this computation it can easily be inferred that this

query cannot be the best way to reach the final answer;
because of cross product. This means that we create a table
whose number of rows is |Studentst| * |Enrolled|.

One of the other possible ways of improving above
computation is to replace Cartesion product with Join

id Name

11 Ali

22 Ahmed

33 Saima

id C.no Grade

11 CS20 A

22 CS21 B

33 CS22 B

Bahria University Journal of Information & Communication Technologies Vol. 8, Issue 1, April 2015

Page 19 ISSN – 1999-4974

operator followed by the selection. Experession with
Cartesian replaced with join is shown below:

π Name (σ Enrolled .Grade = ‘B’ (students ⋈ Students.id = Enrolled.id

(Enrolled))

Under this expression the first operation performed is
the Join operation on Students and Enrolled tables:
Students⋈students.id = Enrolled.id (Enrolled)

 The result of performing Join operation on Students
and Enrolled tables for common IDs is shown in TABLE VI.

TABLE VI. RESULT OF JOIN OPERATION ON STUDENTS AND ENROLLED

TABLES

id Name id C.no Grade

11 Ali 11 CS20 A

22 Ahmed 22 CS21 B

33 Saima 33 CS22 B

After the Join, the next operation performed is selection
σEnrolled. Grade =’B’ whose result is given in TABLE VII.

TABLE VII. RESULT OF SELECTION OPERATION PERFORMED ON TABLE VI

id C.no Grade id Name

22 CS21 B 22 Ahmed

33 CS22 B 33 Saima

Finally, the last operation performed is the projection

πName whose is result is provided in TABLE VIII below:

TABLE VIII. TABLE OBTAINED AFTER PROJECTION OPERATION ON TABLE
VII

Query under Join operation took less execution time as

compared to first plan because the number of rows has
decreased.

The third query plan we have considered is push
selection. The algebraic expression under this strategy is:
πName(Students⋈Students.id=Enrolled.id(σEnrolled.Grade=‘B’(En
rolled))).

According to this expression, selection operation
σEnrolled.Grade=‘B’(Enrolled) is performed before Join and

projection operations. The result of the selection operation
is given in TABLE IX below:

TABLE IX. RESULT OF SELECTION OPERATION ON ENROLLED TABLE

id C.no Grade

22 CS21 B

33 CS22 B

The next operation performed is the Join operation of

the STUDENTS TABLE (TABLE I) and the TABLE IX. The resultant
table is shown below:

TABLE X. RESULT OF THE JOINT OPERATION

id C.no Grade id Name

22 CS21 B 22 Ahmed

33 CS22 B 33 Saima

Finally the last operation performed is projection πName

whose is result is given in TABLE XI below:

TABLE XI. RESULT OF THE PROJECTION OPERATION

Name
Ahmed

Saima

From this computation, we learn that earlier we process

selections, less tuples we need to manipulate higher up in
the tree and thus less execution time is required.

VI. CONCLUSION

In this paper, we presented a tool that translates user
queries (entered in SQL) into mathematical representation
(relational algebra) necessary for data access. It has been
proved that the developed tool is better at: producing
syntax and semantic errors, generating query execution
plans: (i) Simple, (ii) elimination of Cartesian product with
join, and (iii) push selection, allowing connectivity with
databases of interest and produces query results.

Query optimizer of the tool produces execution times of

all three execution plans considered. Based on the
obtained results, it is concluded that push-selection is
better than the join and join is better than Cartesian
product in terms of execution time.

Tool may be used (in both academic and research

institutes) for better understanding of how queries are

Name

Ahmed

Saima

Bahria University Journal of Information & Communication Technologies Vol. 8, Issue 1, April 2015

Page 20 ISSN – 1999-4974

actually processed and optimized and also for the
development of modern DBMS packages which will be
more efficient in terms of execution time.

FUTURE WORK

The measurement of the consumption of resources,
Analysis of the tradeoff between execution time and
consumption of resources, and implementation of few
other optimization techniques are planned for the future.

ACKNOWLEDGMENT

This paper is based on our Masters' thesis defended in
February 2015 at Quaid-e-Awam University of
Engineering, Science & Technology, Nawabshah,
Pakistan.

REFERENCES

[1] Elmasri R., and NavathS. B. "Fundamentals of database systems",

isbn: 978-81-317-1625-0, Addison-Wesley Longman Publishing
Co., Inc. 2010.

[2] Bernstein P. A., and Newcomer E. "Principles of Transaction
Processing". isbn: 9780080948416, 1997.

[3] D. Kossmann. "The State of the Art in Distributed Query
Processing". ACM Computing Surveys, vol. 32, pp 422–469, isbn
0360-0300, Dec. 2000.

[4] Stefano Ceri, Georg Gottlob, "Translating SQL Into Relational
Algebra: Optimization, Semantics, and Equivalence of SQL
Queries", Software Engineering, IEEE Transactions, vol. SE-11,
issue 4, pp. 324 – 345, Apr. 1985

[5] XU Silao,HONG Mei,"Translating SQL Into Relational Algebra
Tree-Using Object-Oriented Thinking to Obtain Expression Of
Relational Algebra", IJEM, vol.2, no.3, pp.53-62, 2012.

[6] Bendre M. "Relational algebra translator", 2013.
http://www.slinfo.una.ac.cr/rat/rat.html.

[7] Y. Ioannidis, “Query Optimization”, Journal ACM Computing
Surveys (CSUR), vol. 28, issn 0360-0300, Mar. 1996.

[8] Santhi Lasya “A Study of Library Databases by Translating Those
SQL Queries Into Relational Algebra and Generating Query Trees"
International Journal of Computer Science Issues(IJCSI), vol. 8,
Issue 5, No 1, Sep. 2011.

[9] Chaudhuri S. Mendelzon A. and Paredaens J. "An overview of
query optimization in relational systems". In proceedings of the
17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pp. 34–43, isbn: 0-89791-996-3, Jun 1998.

[10] Majid Khan and M. N. A. Khan. "Exploring Query Optimization
Techniques in Relational Databases". In proceedings of the
International Journal of Database Theory and Application. vol. 6,
No. 3, Jun. 2013.

	02. 1_Enhancement of Colour Fundus Images by using Single and Multi-Scale Retinex

