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 Abstract — Car Design Optimization deals with the optimal 

structural design of multipart engineering systems which 

require parameters that dealing amongst the disciplines. In this 

paper we used optimization techniques to optimize the 

aerodynamics of a car to reduce drag and drift that optimize 

design to reduce lap time. Our execution involves seven different 

design parameters that is weight scattering, aerodynamic 

downward force scattering, mass of vehicle, height of center of 

gravity, radius of track, weight scattering along width and roll 

stiffness coefficient. The objective is to determine car 

parametric coefficient that minimizes lap time while satisfying 

yaw balance constraint. In order to achieves that several 

techniques is used such as Simulated Annealing, Particle Swarm 

optimization technique and Genetic Algorithm. Results from 

different techniques is obtained in this part of research as to 

explore suitable technique for this type of problem. Previous 

work which we took as our reference paper is only considered 

three variables that is weight scattering, weight scattering along 

width and roll stiffness. While we are taking into consideration 

seven aspects of the car, the additional four are downward force, 

mass of vehicle, height of center of gravity of vehicle and radius 

of the track. These variables also play a vital role in the speed of 

the car or how quick it performs turn without going into a risky 

condition. 

 

 Index Terms — Optimization, Dynamics, Vehicle Design 

 

I. INTRODUCTION 

 

The car structure design optimization encompasses the 

several car parameter simultaneously and leading to the 

optimal solution of a coupled composite design parameter. It 

is regarded as the optimal solution of the interactions. Car 

structural design optimization mainly reduces the complexity 

by breaking down a problem into subsystems which are 

linked by different design parameters, functions and 

performances. 

Latin Hyper-cube Sampling is a stratified irregular 

pattern that gives an effective method for examining 

variables from their multivariate appropriations. Another 

system Latin square is a square exhibit in which every line 

and every segment comprises of the same arrangement of 

passages without reiteration. LHS is an outline procedure is 

utilized to treat all locales of the configuration space equally. 

Genetic Algorithms (GA) are versatile routines which is 

a coordinated irregular pursuit strategy, to locate the global 

optimal solution in complex multi-dimensional hunt space. 

At first numerous individual arrangements are haphazardly 

created to frame an inquiry space including the whole scope 

of conceivable arrangements. Every point in the hunt space 

speaks to one conceivable arrangement stamped by its worth 

(fitness). Second generation is acquired from the hybrid and 

change from the chose extent of existing population [25][8]. 

 Particle swarm optimization is motivated by reenactment 

of social conduct identified with bird flocking[24][14]. The 

essential thought for the social conduct is guiding toward the 

middle, match neighbors' speed and keep away from impacts. 

PSO develops an issue by having a population of competitor 

arrangements. Every particle`s movement is affected by its 

neighborhood best known position and it's likewise guided 

toward the best known position in the hunt space, which are 

redesigned as better positions are found by different particles. 

This is required to move the swarm toward the best 

arrangements. PSO is a Meta heuristic as it makes few or no 

presumptions about the issue being enhanced and can look 

huge spaces of competitor arrangements. Every particle 

monitors its directions in the arrangement space which are 

connected with the best arrangement (fitness) that has 

accomplished so far by that particle. This is called individual 

best, pbest. Another best esteem that is followed by the PSO 

is the best esteem got so far by any molecule in the area of 

that particle. This quality is called global best, gbest. The 

essential idea of PSO lies in quickening every particle toward 

its pbest and the gbest areas, with an irregular weighted 

increasing speed at every time step [24]. 

 Simulated Annealing (SA)[3] is a non-specific 

probabilistic Meta heuristic for the worldwide advancement 

issue of finding a decent estimation to the global optimal 

value of a given capacity in an inquiry space. It is frequently 

utilized when the hunt space is discrete. The name and 

motivation originate from tempering in metallurgy, a system 

including heating and controlled cooling of a material to build 

the extent of its precious stones and lessen their deformities. 

The energy equation for the thermodynamic framework is 

practically equivalent to the objective function, and ground 

state is similar to the global minimum [23]. 

 Previous work which we chose as our reference [1] using 

collaborative optimization technique to minimize the lap-

time or we can say that it maximizes the speed of the vehicle. 

They only considered three design parameter, result obtained 

is shown in table 5 as a comparison with the result obtained 

by the purposed technique.   

 Our goal is to explore different techniques to reduce the 

lap-time. To take a turn on an optimal speed is a main 

objective as part of this paper. We considered seven different 

parametric variables to optimize our result instead of three 

use in previous paper [1]. We used four techniques to 

optimize the results, LHCS, GA, SA and PSO and compare 

results with each other. We found that PSO obtained most 

optimized result in our case.   

A. Abbreviations and Acronyms 

A =   Weight Scattering coefficient  
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B =   Weight Scattering along width 

C =   Aerodynamic Downward force Scattering 

K =   Roll Stiffness coefficient 

U =   Speed/Lap 

β =   Vehicle drift Angle beta 

δ =   Vehicle Wheel Steering Angle delta 

T =   Time/Lap 

Fx =   Forward Force  

Fy =   Side Force 

Fz =   Vertical Force 

FYaw =   lateral moment Force 

YawBal =lateral moment Balance force 

 

II. APPLICATION 

 

Race car design provides a rich environment for 

multidisciplinary design optimization. It includes knowledge 

of aerodynamics, structural-mechanics, vehicle dynamics 

and tire friction for its configuration and analysis. Each 

discipline got its own expertise and control over it individual 

best of the vehicle. 

 Kasprzak and Hacker [1] used multi objective 

optimization (MDO) to maximize race car performance 

across a tracks of fixed radii i.e 400m. During race the car 

faces different corners and straights, for which a set of 

conflicting tradeoffs exist in order to design a race car 

performing well across turns of a radius on a single track. 

Our vehicle model depends on the fantastic bike model 

of Milliken, which has been extended to incorporate four 

individual wheels. Comparisons of movement are composed 

for parallel speeding up, longitudinal increasing speed, and 

yaw balancing. The tires, which may be diverse for front and 

back, are displayed utilizing plain tire information including 

representations of Nonlinearities, for example, load 

affectability and sideslip angle Saturation. Wheel burdens are 

computed in view of static burden, streamlined down power, 

and horizontal burden exchange. 

 Figure 1 illustrates a simplified sketch of the racecar 

model. There are three primary design variables: roll stiffness 

coefficient (K), weight scattering along length (A), weight 

scattering along width (B) and aerodynamic downward force 

scattering (C). Four design parameters are normalized 

between 0 and 1. 
 

𝐶′ =
𝐶𝐿𝐹

𝐶𝐿𝐹+𝐶𝐿𝑅
         (1) 

   

 𝐾′ =
𝐾𝐹

𝐾𝐹+𝐾𝑅
          (2) 

   

 𝐴, =
𝑎

𝑎+𝑏
          

 (3) 

 

𝐵 =
𝑎,

𝑎′+𝑏′           

 (4) 

 

III. MATHEMATICAL MODEL 

 

 Formulization section involves development of the 

equations governing race car design. The analysis begins with 

calculation of lift coefficients, downward forces coefficient 

and other parameters. It achieves with iterative analysis to 

solve for sideways forces, velocity and lap time for the given 

design parameters. All equations in this research is being 

cited  from[1]. Table 1 gives the design parameters for race 

car configurations having normalized values ranging from 

0.3 to 0.6 respectively except height of center of gravity, mass 

of vehicle and radius of track. 

Design space (i.e 0.3-0.6) is for the variables A, B, C, 

and K. Table 2 contains the list of parameters like the radius 

of the track, car weight, height of CG from the ground, 

lengths etc which are taken to be fixed for analysis of race car 

configuration and it is the same as used in [1].  

 

Figure 2 represents the connections between parallel 

strengths and side-slip angles. As showed, the focal point of 

Fig. 1 Race Car Parametric model [1] 

 

Fig. 2 Race car dynamical model [1] 

TABLE 1. Race Car Design Variables 

Variables Description 

A Weight distribution along length  

C Aerodynamic down force distribution 

K Roll stiffness distribution 

m Mass of vehicle 

h Height of CG from ground 

R Radius of the track 

B Weight distribution along width 
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gravity characterizes the inception of the direction 

framework, and clockwise moments are positive. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In observation of the streamlined downward-force 

scattering, C. All formulization is from previous work by 

different authors in this we only used different techniques to 

improve results.  

  𝐶𝐿𝐹 = −0.5 × 𝐶       (5) 

 

          𝐶𝐿𝑅 = −1[5 × (−5 × 𝐶)]     (6) 

 

Equation (7) calculates the weight distribution of the car, 

HW, where g is the gravity due to earth. 

 

                    𝐻𝑊 =
𝑚×𝑔

2
       (7) 

Equations (8-10) govern the coefficients for front and rear 

downward force, FD and RD, and aerodynamic friction force, 

D, where  ρ  is the density of atmosphere. 

 

𝐹𝐷 =  −
𝜌×𝐶𝐿𝐹×𝑅𝑒𝑓𝐴

2
        (8) 

 

𝑅𝐷 =  −
𝜌×𝐶𝐿𝑅×𝑅𝑒𝑓𝐴

2
        (9) 

 

   𝐷 =  −
𝜌×𝐶𝐷×𝑅𝑒𝑓𝐴

2
        (10) 

 
 

 Initialized the system before proceed to evaluate the 

optimal solution, Table 3 indicates the parameters initial 

values. 

 Equations (11-13) determine the aerodynamic forces, 

where positive quantities direct downward force. The 

aerodynamic force acting on the front and rear wheels is 

represented by FzF and FzR, respectively. Fx is an 

aerodynamic friction force that opposes the motion.  

 

𝐹𝑧𝐹 = 𝐹𝐷 × 𝑢𝑜𝑙𝑑2       (11) 

 

𝐹𝑧𝑅 = 𝑅𝐷 × 𝑢𝑜𝑙𝑑2       (12) 

 

𝐹𝑥 = 𝐷 × 𝑢𝑜𝑙𝑑2        (13) 

 

 Equation (14) shows the required track effort, FxR, 

which is permanently positive or it is the only in one direction 

and that direction is considered a positive direction. 

 

𝐹𝑥𝑅 = 𝐹𝑥 + [𝐹𝑦𝐹 × sin(𝛼𝑀𝑎𝑥𝐹)] 
+    [𝐹𝑦𝑅 × sin(𝛼𝑀𝑎𝑥𝑅)]                                                     (14) 
 

Forward-facing and back wheel weights, LFT and LRT, 

are given by Equations (15 and 16). 

 

     𝐿𝐹𝑇 =  (𝐹𝑦 ×
ℎ

𝑡𝐹
) × 𝐾′       (15) 

 

 

𝐿𝑅𝑇 =  (𝐹𝑦 ×
ℎ

𝑡𝑅
) × (1 − 𝐾′)     (16) 

 

  

 

Equations (17-20) determine the down force on each of the 

four wheels. For instance, FzRF, is the down force acting on 

the right front wheel. 

 

𝐹𝑧𝐿𝐹 =  [(1 − 𝐴′) × 𝐻𝑊] + 𝐿𝐹𝑇 +
𝐹𝑧𝐹

2
   (17) 

 

𝐹𝑧𝑅𝐹 =  [(1 − 𝐴′) × 𝐻𝑊] − 𝐿𝐹𝑇 +
𝐹𝑧𝐹

2
   (18) 

 

𝐹𝑧𝐿𝑅 =  [𝐴′ × 𝐻𝑊] + 𝐿𝑅𝑇 +
𝐹𝑧𝑅

2
     (19) 

 

𝐹𝑧𝑅𝑅 =  [𝐴′ × 𝐻𝑊] − 𝐿𝑅𝑇 +
𝐹𝑧𝐹

2
     (20) 

 

 Taking into account the introduced tires with arranged 

horizontal powers because of ordinary load and slip edge, 

quadratic estimate is utilized to decide most extreme slip 

points, and αMaxR, and parallel strengths, FyF and FyR, for 

the front and back axles.  

 Equations (21 and 22) check the horizontal powers on 

the back wheels, FyLR and FyRR, and, if required, decrease 

these forces because of the resistive force ellipse impact. 

 

 

{𝐹𝑦𝐿𝑅 = |

0
𝐹𝑥𝑅

2
> |𝐹𝑦𝐿𝑅|

𝐹𝑦𝐿𝑅√|𝐹𝑦𝐿𝑅2−[
𝐹𝑥𝑅

2
]
2

|

|𝐹𝑦𝐿𝑅|
𝑒𝑙𝑠𝑒

}         (21) 

                  

TABLE 3.    Initialization of Lateral Force Loop 

Parameter Description Initial value 

FyRF Right front wheel load 0 

FyRL Left rear wheel load 0 

FyRR Right rear wheel load 0 

FyF Lateral force front axle 0 

FyR Lateral force rear axle 0 

Fy Lateral force 0 

uold Velocity last iteration 0 

𝛼MaxF Max front slip angle 0 

𝛼MaxR Max rear slip angle 0 

 

TABLE 2.     Race Car and Track Parameters 
Parameter 

Description 
Parameter Symbol Value Unit 

Vehicle wheel base L 9.67 Ft 

Vehicle mass M 41.7 Slug 

Height of CG H 1.167 Ft 

Front track tF 5.5 Ft 

Rare track tR 5.25 Ft 

Frontal area RefA 10 ft2 

Skid pad radius Radius 400 Ft 

Drag coefficient CD 2.9 _ 
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{𝐹𝑦𝑅𝑅 = |

0
𝐹𝑥𝑅

2
> |𝐹𝑦𝑅𝑅|

𝐹𝑦𝑅𝑅√|𝐹𝑦𝑅𝑅2−[
𝐹𝑥𝑅

2
]
2

|

|𝐹𝑦𝑅𝑅|
𝑒𝑙𝑠𝑒

}       (22) 

 

 Equation (23) calculates the complete back lateral force, 

FyR, as a sum of sideways forces acting on each of the two 

back wheels. 

𝐹𝑦𝑅 = 𝐹𝑦𝐿𝑅 + 𝐹𝑦𝑅𝑅      (23) 

 

Equations (24 and 25) govern the total yaw force, Yaw_Bal. 

 

𝐹𝑌𝑎𝑤 = [(𝐹𝑦𝑅𝐹 − 𝐹𝑦𝐿𝐹) × 𝑡𝐹 × 

sin(𝛼𝑀𝑎𝑥𝐹) + (𝐹𝑦𝑅𝑅 − 𝐹𝑦𝐿𝑅) × 𝑡𝑅 × sin(𝛼𝑀𝑎𝑥𝑅)] (24) 

 

𝑌𝑎𝑤𝐵𝑎𝑙 = [𝐴 × 𝐹𝑦𝐹 × cos(𝛼𝑀𝑎𝑥𝐹)] − 

 [𝐵 × 𝐹𝑦𝑅 × cos(𝛼𝑀𝑎𝑥𝑅)] + 𝐹𝑌𝑎𝑤  (25) 

 

 Equations (26 and 27) are used to apply yaw balance, 

Yaw_Bal = 0. If Yaw_Bal < 0, Equation (22) provides the 

essential tuning, while Equation (23) is used to correct the 

error for Yaw_Bal > 0. 

 

𝐹𝑦𝐹 =
[(1−𝐴)×𝐹𝑦𝑅×cos(𝛼𝑀𝑎𝑥𝑅)]−𝐹𝑌𝑎𝑤

𝐴×cos(𝛼𝑀𝑎𝑥𝐹)
        (26) 

 

𝐹𝑦𝑅 =
[𝐴×𝐹𝑦𝐹×cos(𝛼𝑀𝑎𝑥𝐹)]+𝐹𝑌𝑎𝑤

𝐵×cos(𝛼𝑀𝑎𝑥𝑅)
     (27) 

 

 Equation (28) calculates total sideways force, Fy, as a 

sum of forward-facing and back sideways forces. Then, 

Equations (29 and 30) are used to govern the resultant speed, 

u, and lap time, T respectively. 

 

 

𝐹𝑦 = 𝐹𝑦𝐹 + 𝐹𝑦𝑅        (28) 

 

𝑢 =  √|
𝐹𝑦×𝑅𝑎𝑑𝑖𝑢𝑠

𝑚
|        (29) 

 

𝑇 =  
2𝜋×𝑅𝑎𝑑𝑖𝑢𝑠

𝑢
         (30) 

 

IV. SENSITIVITY ANALYSIS 

 

 Sensitivity means if some variables of the system are 

changed then how much change takes place in the system. In 

this project LHS is used for sampling within given design 

space and then the objective function is computed for 

different perturbations of design variables. 

Pre sensitivity analysis is performed to check for 

properties of the perturbations in design parameters on the 

objective function before applying optimization 

 

Fig. 3 Pre-Sensitive Analysis Result of A, B, C, k, m, h and R respectively 

TABLE 4.    Post Sensitivity Analysis of Optimization Techniques 

 A B C K M H T 

LHCS 0.556 0.314 0.372 0.608 33.916 1.222 21.001 

 0.534 0.302 0.357 0.584 32.586 1.174 18.176 

        

GA 0.301 0.356 0.497 0.525 32.174 1.101 14.7 

2% 0.307 0.363 0.507 0.536 32.818 1.123 14.846 

-2% 0.295 0.349 0.487 0.515 31.531 1.079 14.552 

        

SA 0.3 0.569 0.444 0.335 30 1.255 15.620 

2% 0.306 0.580 0.452 0.341 30.6 1.280 15.776 

-2% 0.294 0.557 0.435 0.328 29.4 1.229 15.463 

        

PSO 0.3 0.349 0.487 0.515 30 1.08 13.537 

2% 0.306 0.355 0.496 0.525 30.6 1.101 13.673 

-2% 0.294 0.342 0.477 0.504 29.4 1.058 13.4 
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techniques.500 samples were generated from the design 

space. In figure 3, 500 samples of all seven variables are 

shown and it shows the dependency of each variable onto the 

other variable. As a result we easily identify the tradeoff 

between variables since it clearly demonstrate the importance 

with respect to other variables. It also shows the variable 

search space for optimal solution. 

 Post sensitivity analysis is performed to check for special 

effects of the perturbations in design parameters on the 

objective function after getting the optimal solution. In post 

sensitivity analysis the system was perturbed by 2% to - 2%. 

Some tabular and graphical results are given below. 

 

V. RESULTS 

 

 The conclusions obtained previously from collaborative 

optimization are compared with outcomes obtained from 

iterative technique with Latin hyper cube sampling and GA, 

SA and PSO to race car design problem. In the first method 

we generated 500 random samples from Latin hyper cube 

sample. To get the optimal configuration for the race car 

design. The Latin hyper cube sampling is used to perform the 

optimization. The Yaw Balance restrictions are included in 

the objective function of the optimization formulation. 

In the second method the objective function including 

the Yaw balance constraint is taken as the fitness function for 

genetic algorithm. The size of population for genetic 

algorithm is 20 and generation size is 60. The stopping 

criteria for genetic algorithm are up to the stalling of the 

result. After some time values for lap time started to stall and 

at that time genetic algorithm performed the iterations and 

generated the results of output variable. The simulated 

annealing and particle swarm optimization is used to compare 

the outcomes. 

 Table 5 summarizes the result for collaborative 

optimization formulation, iterative technique with Latin 

hypercube sampling and genetic algorithm. Table 6 further 

compare the results of different optimization techniques. 

After this conclusion we obtained the best technique for the 

similar kind of problems. 

 Table 4 represent the post sensitive analysis of the result 

obtained by different optimization techniques according to 

the variables value obtained through optimization. 

In figure 4, function value represents lap time of car 

which is also representing the global best of the system verses 

iteration. It shows search is more optimal with increasing no 

of iteration.  

Figure 5 represent the graph of lap time on vertical axes 

and no of times it goes through the procedure to consolidate 

the solution to achieve optimal result. 

 Figure 6 represent the lap time on vertical axis and 

generation on horizontal axis, it shows that as generation 

passes the optimal value of lap time improves. Two type of 

result appeared on graph one is best value and other is mean 

value. 

 Table 5 shows that PSO obtained better result when we 

compare with other result or from previous paper result. 

  

 
Fig. 4 Result of particle swam optimization 

 
Fig. 5. Result of Simulated Annealing 

 
Fig. 6 Genetic Algorithm Result 

TABLE 5.   Comparison between Lhcs, Ga, Co, Sa & Pso 

Parameter Collaborative LHCS 
Genetic 

Algorithm 

Simulated 

Annealing 

P.S 

Optimization 

      

A 0.300 0.556 0.301 0.300 0.3 

C 0.574 0.372 0.497 0.444 0.487 

K 0.301 0.608 0.525 0.335 0.515 

B 0.3 0.314 0.356 0.569 0.349 

MASS 41.7 33.916 32.174 30 30 

H 1.167 1.222 1.101 1.255 1.08 

Radius 400 384.771 365.329 400 400 

Lap 

Time 
14.884 s 21.00 s 14.7 s 15.620 s 13.537 s 
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VI. CONCLUSIONS 

 

 By comparing the results, we conclude that the results 

obtained by particle swarm optimization (PSO) are much 

suitable to reduce time to cover entire lap and the coefficient 

result generated by this technique are less effected by 

perturbations as compared with the results obtained from 

genetic algorithm (GA) and simulated annealing (SA). Race 

car configurations obtained from swarm optimization (PSO) 

are more optimal as compared to genetic algorithm (GA) and 

simulated annealing (SA). The comparison of our results with 

that of collaborative optimization shown in “table 5” shows 

that the results obtained in this part of research are more 

optimal and may increase the speed of the car as it’s our 

primary objective. 
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