
Bahria University Journal of Information & Communication Technologies Vol. 9, Special Issue, September 2016

Page 1 ISSN – 1999-4974

Computer Assisted 2-D Graphical Software

Modelling using BSP Tree Algorithm
Imran Sarwar Bajwa, Mamoona N. Asghar, Muhammad Anwar Shahzada

 Abstract— Current approaches/CASE Tools are unable to

provide support for interchanging Meta data of models in the

form of XMI. Due to lack of this support research of current

approaches /Tools for automated software model cannot be

incorporated in existing state of Art CASE tools. Even after

providing the support of Meta data interchanging support using

XMI in existing approach cannot automatically generate

graphical model. Due to absence of any algorithm support for

generation of graphical model. One of the reasons the current

CASE tools are unable to import/export graphical models is

inability of XMI to store 2-D spatial information regarding

coordinates of the elements of a graphical model as XMI can

inherently stores just metadata of a graphical model. This paper

presents a novel idea of using Binary Space Partitioning (BSP)

tree for diagram generation as BSP is an efficient spatial data

structure. The used approach cannot only perform a set of

Boolean operations on complex graphical models but can also

perform 2-D space partitioning. A Java based implementation

as Eclipse plugin is also discussed in this paper. The results of

experiments express that the used approach is efficient and

accurate.

 Index Terms— Software Class Models, Unified Modelling

Language, 2-D Space Partitioning, BSP Algorithm

I. INTRODUCTION

 Since last couple of decades, graphical modeling is very

popular for graphically elaborating software models (such as

structural models, behavioural models, start charts, etc.) in

the domain of software engineering. UML (Unified Modeling

Language) is a standard used to seamlessly design graphical

models of complex and large-sized software systems [1].

Various activities performed at different stages of Software

Development Life Cycle (SDLC) are model generation,

models’ consistency-analysis, design pattern generation,

code engineering, reports and documentation preparation,

etc. UML based graphical models are part of almost all of

these SDLC activities. Various Computer Assisted Software

(CASE) tools are used to perform the above mentioned.

Typically, in a software development team, team members

have to share the artefacts designed in various CASE tools

used at different stages of SDLC. Such CASE tools assist in

accelerating the development of a project by simplifying

various stages of SDLC.

 Typically used CASE tools are MS Visio, Rational-

Rose, ArgoUML, Altova, Enterprise-Architect, Smart-Draw,

etc. provide facility of importing and exporting metadata of

a software model using XMI format 1.0 or 2.0. XMI is an

OMG’s standard used for metadata interchange from one

platform to others [2, 3, 4, 5]. However, none of the tools has

ability of re-generating visual artefacts from XMI except

Enterprise Architect [6] that can just generate diagrams just

from its own generated XMI. A key reason of this non-

conformity in XMI and graphical models is that XMI does

not store any graphical information that can help in drawing

a model element along 2-D spatial coordinates and avoiding

any possible overlying of elements of a visual artefact. A

solution of this problem is presented in [19] by proposing

additions in XMI metamodel to address this problem to store

graphical coordinates information. Though, such additions in

XMI metamodel can become a performance overhead since

resultant XMI will be more complex to machine process. Due

to this reason, import/export of a complete graphical model

(such as a UML class model or a BPML process model)

designed in a CASE tool is a thought-provoking task, to date.

A novel idea is proposed in this paper that automatically

generates a UML artefact such as a UML class model from

XMI with the help of BSP (Binary Space Partitioning) tree

[7] data structure and algorithm. In various applications of

computer graphics, graphical information of a 2-D diagram

can be captured in a BSP Tree [8]. A BSP tree can be useful

in capturing the spatial arrangement and relations in a set of

objects of a UML class diagram. After capturing the

graphical coordinates, a parse tree is traversed to re-generate

the same UML class model by efficiently partitioning the 2-

D space. Once all the UML classes are drawn on a 2-D space,

extra information is tagged such as various relationships

between the target elements e.g. aggregations associations,

generalisations, etc.

 In remaining paper, Section 2 discusses the BSP tree data

structure used for 2-D space portioning. Section 3 describes

the used algorithm for space portioning and drawing model.

An example of experimentation is presented in section 4

discusses evaluation details. An account of related work is

given in section 5 and finally, paper is concluded.

II. MATERIAL AND METHOD

 Famous geometrical problems such as ray-tracing [9],

Constructive solid geometry (CSG) [10, 11], etc. have been

successfully solved by using BSP tree data structure. Fuchs,

et al. presented BSP that partitions a 2-D space having a set

of polygons [12]. The BSP tree works by splitting a 2-D space

into couple of partitions as dimension d-1. The process of

generating binary partitions is repeated unless the total space

is segregated into smaller portions called “cells”. However,

when a BSP tree is generated having graphical information of

a model or a diagram, the tree can be traversed easily to re-

produce the model. We aim to use BSP trees in automatic

generation of UML diagram from XMI. We have performed

this process into two phases:

Imran Sarwar Bajwa, Mamoona N. Asghar, Muhammad Anwar Shahzada,

Department of Computer Science, The Islamic University of Bhawalpur.

Email: Imran.sarwar@iub.edu.pk. Manuscript received July 13, 2016;
revised on Aug 17, 2016; accepted on Sep 26, 2016.

http://www.cs.buffalo.edu/~whitley/research/graphics/bsp/bsp_bib.html#fkn:on-visible-surface
mailto:Imran.sarwar@iub.edu.pk

Bahria University Journal of Information & Communication Technologies Vol. 9, Special Issue, September 2016

Page 2 ISSN – 1999-4974

A. Generating of a BSP Tree

The initial step is generation of a BSP tree of elements of a

UML artefact such as a class diagram. In generation of a BSP

tree, it is ensured that a BSP-tree has all the related

information about UML class model. We can identify

hierarchy of classes with the help of an algorithm given

below:

TABLE. 1 ALGORITHM FOR IDENTIFYING CLASS

HIERARCHIES

Algorithm 1: Identification of Hierarchy of classes

Require: List of classes

1: If class-A is associated with class-B then

 class-B will be a child of class-A

2: If class-A has generalization of other class-B then

 class B will becomes a child of class-A(a class-B will

 inherit all features of Class-A)

3: If class-A is aggregates another class-B then

 class-B will becomes child of class-A.

4: If class-A has composition of another class-B then

 class-A will becomes child of class-B.

5: If class-A has realization with an interface B then

 class A will become child of B.

6: If class A has no relationship to any other classes or

 there is numeration then

 class A is being considered as leaves of a tree.

 BSP tree not only has information about number of

classes as well as hierarchical structure of elements in a UML

artefact. It’s better to generate a Binary space partitioning tree

from XMI file rather than to generate Binary space

partitioning tree through graphical scene. For example, all

classes are C1, C2, …, Cn in an XMI document are extracted

from XMI document and stored in 1-D array C. First we need

to find out the hierarchy in which these classes are going to

be stored in a BSP tree data structure.

 We have used such associations to find the hierarchy

among the nodes in a tree. The used algorithm for generating

BSP tree for UML class diagram is given below:

TABLE. 2 ALGORITHM FOR GENERATING BSP

TREE

Algorithm 2: For Generating BSP Tree

Require: List of all classes

1: Select a middle class Cm. Middle class Cm is any of the

classes that have exactly two relations.

2: Put all the classes in XMI file before the class Cm, into a list

C0…m-1 on Left-Side of a BSP data structure.

3: A set of classes which exist after the class Cm are placed in

XMI into a list Cm+1…n to be right-side of the Binary Space

Partitioning tree.

4: The class Cm will become the root of the Binary Space

Partitioning tree. After that, the available classes in a list from

C0…m-1 are put in the Binary Space Partitioning data structure to

the left-side of the super class while the remaining set of classes

are kept in list from Cm+1…n are arranged in the Binary Space

Partitioning tree to the right-side of its super class.

5: If in a list C0…m-1 and Cm+1…n having more elements, go back

to step No.2. By applying Recursive process again and again on

the lists C0…m-1 and Cm+1…n till the last element in the list.

 To generate a tree the first requirement is to identify the

suitable class for root node. A class having exactly two of

relationships (identified by Algorithm 1) becomes Cm that

becomes the root node C root of the BPS tree. All the

remaining classes in array C will become child nodes of the

root in the tree. Here, an associated class Ca will becomes a

child of class C root. Here, all classes on the left side of the

root node are Cl and can be find out by using function f (Cl)

< C root. Similarly, all classes on right side of the root are Cr

and function to find these classes is f (Cr) > C root. Here,

association in two classes is determined on the basis of UML

associations, UML generalizations and UML aggregations.

B. Traversing of BSP Trees

After generating a BSP tree, next phase is its traversing for

the sake of 2D space portioning. During the space portioning

process, coordinates of each partition are also saved that are

later on used for drawing graphical shapes to generate UML

class diagrams.

TABLE. 3 ALGORITHM FOR TRAVERSING BSP

TREE

Algorithm 3: BSP Tree Traversal

Require: A BSP tree

1: functionTraverse1(BSPtree)

2: if (BSPtree==null)then

3: exit

4: end if

5: if (positivesideof(rot(BSPtree))

6: traverse1(positivebranch(BSPtree));

7: displaytriangle(rot(BSPtree));

8: traverse1(negativebranch(BSPtree));

9: else

10: traverse1(negativebranch(BSPtree));

11: displaytriangle(rot(BSPtree));

12: traverse1(positivebranch(BSPtree);

13: end if

14: end function

 To traverse a BSP tree, a simple test is performed at each

node of the tree recursively. In the algorithm for BS tree

traversal shown in Table III, a slightly adapted version of

traditional in-order traversal algorithm [13] is used. The

process of traversing a BSP tree and its mapping to a binary

partitioned space is shown in Figure 1. A major modification

in [13] is not using the view point parameter as the originally

this algorithm was proposed for rendering purpose.

 In our approach, to draw a UML class model, a 2-D space

is portioned into a set of cells as shown in Figure 1 and a

rectangle is drawn to represent a cell. Since, each partition is

a binary partition, each rectangle has a neighbouring

rectangle by side and may be a following rectangle as well.

Bahria University Journal of Information & Communication Technologies Vol. 9, Special Issue, September 2016

Page 3 ISSN – 1999-4974

Fig. 1 BSP tree to UML class model mapping

C. Used Framework for Diagram Generation

The process of generating diagram is performed into two

phases: initially, XMI script of a UML class diagram is

mapped to a BSP tree and then by traversing the BSP tree re-

generation of a UML class model is possible. In our

approach, the experiments were performed with 2.1 version

of XMI and the reason of choosing 2.1 version of XMI was

acceptance by most of the major CASE tools e.g. Enterprise

Architect, ArgoUML, Altova UModel, USE, etc.

 The proposed framework is shown in Figure 2 where

input of the system is XMI (.xml) script and then a set of

processing activities are executed to perform the steps

explained in the previous section.

 All the steps of proposed framework for 2-D space

partitioning and UML class diagram generation are explained

below:

D. Parsing XMI Script

The working of the used framework starts with input

acquisition of metadata of a UML class diagram in the form

of XMI. We have used a XMI parser developed in Java as

Eclipse plugin for this purpose. Since, we use the EMF

(Eclipse Modeling Framework) Ecore format of XMI, the

parsing module is based on Ecore parsing libraries. During

parsing of Ecore XMI, the names of classes, their respective

attributes and methods are extracted along the various types

of relationships. It helps to extract classes, objects and related

tags. The extracted information is stored into an

ArrayList<String> as class names, respective class

variables, and class functions along associated relationships.

E. Classes Hierarchy Identification

After processing the XMI script for information processing,

the associations in classes is extracted. Here, different

associations are represented in a different way. Extraction of

such associations is also important as the hierarchy of nodes

in a BSP tree representing classes is based on the types of

relationships such as associations, aggregations, etc.

F. BSP Tree Generation

Once the required information such as class names, attributes,

associations, etc. is retrieved, the BSP tree is generated. To

generate a BSP tree, first of all a root node is selected by

randomly choosing a class that comes first in XMI script will

also be first class in ArrayList<String>. This process of

iteratively repeated by selecting the next class in

ArrayList<String> and deciding its hierarchy by using

algorithm 1 and then generating next node of the BSP tree by

using algorithm 2. This process is repeated recursively until

every polygon is marked as a node of the BSP tree.

 Once a BSP tree is generated, it is ready to be traversed

and generate a UML class diagram. The traversal details of a

BSP tree are given in next section.

Fig. 2 Framework of the used system for 2-D space

partitioning

G. Traversing the BSP Tree

To generate the UML class diagrams, we need to traverse the

BSP tree, first. The tree is typically traversed in linear time

from an arbitrary viewpoint. However, we are not drawing

the UML model in a particular perspective of user’s view.

Hence, we do not consider the view point parameter here.

 In computer graphics, a BSP tree is in-order traversed.

The process of in-order traversal recursively continues until

the last node of the tree is traversed. In the case of a 2-D space

tree, a modified in-order traversal (see Fig. 1) yields in a

depth-sorted ordering of all rectangles (classes) in the space.

Using the in-order traversal, either a back-to-front or front-

to-back ordering of the triangles (classes) can be drawn. The

back-to-front or front-to-back ordering is a matter of concern

in the scenes where there are overlapping objects. However,

in case of a UML class model, all objects (classes) in a scene

are non-overlapping; the ordering of drawing does not matter.

XMI
Parser

List of UML classes

UML Class Model Diagram

Generating a BSP Tree

XMI of a UML Class Model

Parse XMI 2.1 Representation

Identifying hierarchy of classes

Traversing the BSP tree

Drawing UML Class Diagram Graphics

Library

BPS Tree of classes

Bahria University Journal of Information & Communication Technologies Vol. 9, Special Issue, September 2016

Page 4 ISSN – 1999-4974

H. Drawing UML Class Model

In this phase, first the extracted information from the

previous module is used to draw the UML class diagrams.

Fig. 3 Mapping the BSP tree to UML class Diagram

 For the root node, the whole 2-D space is bisected into

vertical position. Here, the first class that is root node can be

drawn at any side of the partition however our algorithm

draws the class on the left side of the vertical division. To

actually draw class model, a Java based module was designed

that is based in 2D Graphics library that can draw rectangles,

lines on given coordinates. The rendering process in Java can

be broken down into various phases that are controlled by the

Graphics 2D rendering attributes [28].

 To draw one a class diagram, a combination of three

rectangles are drawn on a JPanel so that the size of the

rectangle may be adjustable. Here, all three rectangles are

filled with class names and other information. Afterwards the

relationships are also drawn on 2-D space. Finally, the

diagram is labeled

III. RESULTS AND DISCUSSION

 To test the designed tool XMI2UML, we present here a

solved case study. The solved case study is a sub set of a

Library Domain Model (LDM) [18] that describes main

classes and relationships which could be used during analysis

phase to better understand domain area for Integrated Library

System (ILS), also known as a Library Management

System (LMS). The problem statement consists of a UML

Class model (see Fig 4). Here EMF Ecore format of XMI is

used and the Ecore of UML class model shown in Figure 4 is

designed in Eclipse EMF. The used example in the

experiment (see Figure 4) is given in [18].

Fig. 4 Example of EMF Ecore XMI

Our tool XMI2UML tool takes input EMF ECore XMI of the

UML class model shown in figure 4 and then the proposed

tool processes data and generated output is shown in Table

IV and the extracted relationships are used in Table V:

TABLE. 4 OUTPUT OF EMF ECORE XMI

Category Count Details

Classes 05 Person, Customer, Order,

NormalOrder, OrderGroup

Attributes 09 age, gender, name, address,

membershipno, date, num, id, name

Operations 00 getAge(), getGender(),

getName(),getAge(), getGender(),

getName(), placeOrder(),

recieveOrder(), close(), confirm(),

proceed(),close(), confirm(), proceed(),

Objects 00 -

Multiplicity 02 *, 0…*

Associations 01 Order – Customer

Composition 01 Order – OrderGroup

Aggregations 00 -

Generalizations 01 Order - NormalOrder

Realization 01 Customer -- Person

 After extracting the information of a UML Class model,

a logical model of a BSP tree data structure is generated as

shown in Figure 5.

TABLE V RELATIONSHIP EXTRACTION FROM

EMF ECORE XMI

S No./

Type
Source

Mult.

A

Lab

el

Mult.

B

Destinati

on

Relation

01

Order * - 1 Customer

Relation

02

Order 1 - 0 …

*

OrderGro

up

Relation

03

Order - - - NormalO

rder

Relation

04

Custo

mer

- - - Person

Bahria University Journal of Information & Communication Technologies Vol. 9, Special Issue, September 2016

Page 5 ISSN – 1999-4974

The BSP tree generated for the solved example is shown in

Fig. 5.

Fig. 5 Binary Space Partition Tree generated for the example

 After generating a logical model based BSP tree the BSP

tree is mapped to an actual diagram and the actual diagram of

the solved case study above is shown in in Figure 6. In the

Figure 6 the coloured dotted lines show the rationing done by

the BSP tree algorithm.

Fig. 6 output of XMI2UML tool

 Different examples were solved by the XMI2UML tool

and the results are shown in Table VI. However, an efficiency

related issue of BSP that was highlighted by Bruce Naylor is

balancing of the BSP tree. To solve this problem various tree

balancing algorithms can be used. Including the examples

discussed above; total 5 different scenarios were processed.

The results of all examples are shown in Table VI.

TABLE VI RESULTS OF DRAWN UML CLASS

MODELS

Category Total

Items

Correct

Items

Missed

Items

Incorrect

Items

Classes 36 30 2 3

Attributes 36 33 1 2

Relationships 20 16 1 3

Cardinality 20 18 0 2

 The results of the experiments are further represented in

terms of recall and precision. Table VII shows that recall of

Classes is 86.11% and precision is 91.71% that is very

encouraging for future enhancements (see Fig. 7.).

TABLE VII RECALL AND PRECISION OF RESULTS

Category Recall Precision

Classes 86.11% 91.17%

Attributes 91.66% 93.93%

Relationships 80.33% 84.21%

Cardinality 90.00% 90.90%

Fig. 7 Manifestation of results

 Figure 7 shows the results of the experiment as the graph

shows that accuracy of classes is 91% and attributes is 94%

while accuracy is of relationships and cardinality is at lower

side as 78% and 90% respectively.

IV. CONCLUSION

 In this research paper, a challenging task of automated

creation of UML class diagram with software requirements is

addressed since natural language requirements do not have a

particular graphical representation. We integrated BSP trees

for automated generation of UML class models. Our research

is all about designing and implementing a theory that can

read, understand and analyze the natural language software

requirements in text file and transform into XMI format and

then we generated UML class diagram from XMI. We have

designed a fully automated framework which has an ability

to identify classes, class objects, attributes, Associations,

relations among classes and operations by applying an

artificial intelligence based methodology. Class diagrams are

generated by using the knowledge which is extracted through

framework. Even there is no involvement of user normal

Customer

Person Order

NormalOrder OrderGroup

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

Classes Attributes Relationships Cardinality

Experiements Results

Recall Precision

Bahria University Journal of Information & Communication Technologies Vol. 9, Special Issue, September 2016

Page 6 ISSN – 1999-4974

accuracy of the product is more than 81%. The software

developers input software requirements specifications in Text

file and it generate class diagram. We also provided an

interface in graphical form through which a user can enter

text file of software requirements and then UML class

diagram is generated from the input text.

REFERENCES

[1] OMG. (2003) Unified Modeling Language: Diagram

Interchange version 2.0, July 2003. OMG document ptc/03-07-

03. Available: http://www.omg.org.

[2] OMG. (2005). XML Metadata Interchange. (XMI) version 2.1.

Object Management Group. Available: http://www.omg.org.

[3] Alanen, M., Lundkvist, T., Porres, I., (2005). A Mapping

Language from Models to XMI [DI] Diagrams. Proceedings of

the 31st Euromicro Conference on Software Engineering and

Advanced Applications, page(s): 450-458, IEEE Computer

Society, Porto, Portugal, Aug, 2005.

[4] Malesevic, A., Brdjanin, D., & Maric, S. (2013, July). Tool for

automatic layout of business process model represented by

UML activity diagram. InEUROCON, 2013 IEEE (pp. 537-

542). IEEE.

[5] Kovse, J., Härder, T., (2002). Generic XMI-Based UML Model

Transformations. OOIS '02 Proceedings of the 8th

International Conference on Object-Oriented. September 2002.

[6] Marco Matuschek. 2006. UML - Getting Started: Sparx

Enterprise Architect, To a running UML-Model in just a few

steps, by Willert Software Tools, Available at:

http://www.willert.de/assets/Datenblaetter/UML_GettingStart

ed_EA_v1.0en.pdf

[7] Ferdowsi, S., Voloshynovskiy, S., Gabryel, M., &

Korytkowski, M. (2014, January). Multi-class Classification:

A Coding Based Space Partitioning. InArtificial Intelligence

and Soft Computing (pp. 593-604). Springer International

Publishing.

[8] Hertzog, P. (2015, March). Binary Space Partitioning Layouts

to Help Build Better Information Dashboards. In Proceedings

of the 20th International Conference on Intelligent User

Interfaces (pp. 138-147). ACM.

[9] T. Ize, I. Wald, and S. Parker. 2008. Ray Tracing with the BSP

Tree. In IEEE Symposium on Interactive Ray Tracing (RT'08),

pp.159-166, 2008.

[10] C. Segura, T. Stine, J. Yang. (2013). Constructive Solid

Geometry Using BSP Tree. Computer-Aided Design, 24-681:

Availableat:https://www.andrew.cmu.edu/user/jackiey/resour

ces/CSG/CSG_report.pdf

[11] Veeramani, A., Venkatesan, K., & Nalinadevi, K. (2014,

October). Abstract Syntax Tree based Unified Modeling

Language to Object Oriented Code Conversion. In Proceedings

of the 2014 International Conference on Interdisciplinary

Advances in Applied Computing (p. 25). ACM.

[12] Badreddin, O., Lethbridge, T. C., & Forward, A. (2014,

January). A novel approach to versioning and merging model

and code uniformly. In Model-Driven Engineering and

Software Development (MODELSWARD), 2014 2nd

International Conference on (pp. 254-263). IEEE.

[13] Park, J., Chun, I., Hong, S. H., Yoon, T., & Kim, W. (2014). A

Resource Monitoring Code Generation for Self-

healing. International Information Institute (Tokyo).

Information, 17(3), 1097.

[14] Satish, P., Paul, A., & Rangarajan, K. (2014, March).

Extracting the combinatorial test parameters and values from

UML sequence diagrams. In Software Testing, Verification

and Validation Workshops (ICSTW), 2014 IEEE Seventh

International Conference on (pp. 88-97). IEEE.

[15] Bajwa I.S., Samad A., Mumtaz S. 2009. Object Oriented

Software modeling Using NLP based Knowledge Extraction.

European Journal of Scientific Research, 35(01):22-33

[16] Marko Boger, Mario Jeckle, Stefan Mueller, Jens Fransson.

2002. Diagram Interchange for UML. UML 2002: 398-411

[17] Library Domain Model (LDM) Available at: http://www.uml-

diagrams.org/class-diagrams-examples.html

[18] OMG: (2001). Meta Object Facility Specification. (MOF)

version 1.3.1, Object Management Group. Available:

http://www.omg.org.

[19] Docs.oracle.com, (2015). Graphics2D (Java Platform SE 7).

Availableat:http://docs.oracle.com/javase/7/docs/api/java/awt/

Graphics 2D.html [Accessed 7 Jan. 2015].

[20] Hameed, K., & Bajwa, I. S. (2012). Generating Class Models

Using Binary Space Partition Algorithm. In Computer and

Information Science 2012 (pp. 1-13). Springer Berlin

Heidelberg.

http://www.omg.org/
http://www.willert.de/assets/Datenblaetter/UML_GettingStarted_EA_v1.0en.pdf
http://www.willert.de/assets/Datenblaetter/UML_GettingStarted_EA_v1.0en.pdf
http://www.uml-diagrams.org/class-diagrams-examples.html
http://www.uml-diagrams.org/class-diagrams-examples.html

