
Bahria University Journal of Information & Communication Technologies Vol. 9, Issue 2, December 2016

Page 1 ISSN – 1999-4974

Procedural Animation of 3D Humanoid Characters Using Trigonometric

Expressions

Zeeshan Bhatti, Imdad Ali Ismaili, Shehnila Zardari, Hafiz Abid Mahmood Malik, Mostafa Karbasi

 Abstract – This paper discusses a technique of generating

procedural animation of bipedal characters through

expressions in Maya using trigonometric functions. The

character skeleton of bipeds is procedurally generated using a

template based widgets mechanism. The skeletal joints created

and rigging is done through a procedural programming

technique based on the underlying widget structure. The

expressions using trigonometric functions are then applied on

each body part to produce procedural motion. The entire

system is procedurally generated and the user is presented with

a complete rigged character with simulation. The various

parameters of the animation are then controlled by and easy to

use graphical user interface, which allows the animator to

further manipulate and customize the animation. All the

changes in the parameters are reflected in the simulated

skeleton in real-time. Using these trigonometric equations,

various types of biped motions are generated and controlled at

runtime dynamically, producing a wide range of animations

which can be easily customized and further extended according

to the requirements of the scene.

 Index Terms – Animation, Biped, Procedural motion,

Simulation.

I. INTRODUCTION

 The vastly growing movie and game industry with ever

increasing demand of realistic animation of 3D characters has

increased the challenges posed to a 3D artist. There is an

ongoing debate among the leading animators and production

studio over quality verses quantity of the animation. As the

amount of projects increase every year and human resource

of qualified animators is scarcely available, the production

studios harshly demand a large quantity of animation

produced in a short time. This is one of the major reason that

most of the large production studios are forced to use motion

capture for producing realistic animation quickly and

accurately.

 The key-frame being a traditional approach takes a huge

time to render a realistic looking animation. There is a big

time loss, but with motion capture the time is reduced,

consequently increasing other complications like the cost of

motion capture sensors, specially trained personals, hardware

and software requirements etc. Finally the procedural

animation comes into the picture. With the advent of

technology and algorithms it seems a lot easier to write an

algorithm that would simply move a character according to

its biological gaits with locomotion parameters and producing

a realistic looking animation with a single click of a button.

Obviously this approach also has various unfeasible

constraints that limit its usability and practical

implementation. First, the algorithms to produce a realistic

motion are very complex especially when physics based

dynamic motions are to be achieved. Algorithms are then

usually tested and implemented in a special environment

using particular tools like SIMBICON [1], Open Dynamic

Engine (ODE) [2] are but few. Application of these tools is

good for research purpose, however, in practice it is difficult

to implement these algorithms in professional software like

MAYA. Hence, most of this work is limited to research only,

rather than actual implementation. The major setback of such

procedural animation methodologies is that these are hardly

customizable. The animator is unable to change and modify a

large part of the motion that is obtained procedurally and is

stuck with what the programmer has programed the 3D

character to do. In this project we have addressed this issue of

practical usability, simplicity of motion equations and

customization of procedurally generated animation.

 The area of biped simulation is extensively researched

and discussed in the computer graphics industry due to its

importance in animation, robotics and biomechanics. Various

algorithms and techniques have been addressed for

generating realistic looking simulation or animation of

humanoid characters locomotion’s. The problem of

developing physics based kinematics or dynamic motions

models for generating complex human motion is still

considered a challenging problem [3].

 Laszlo et al. has developed an interactive user-in-the-

loop technique for controlling physics based animation by

interactively controlling the planer dynamic simulation using

a mouse and keyboard [3]. Whereas, I. D. Horswill uses

kinematics based model through procedural animation to

produce realistic dynamic motion with each body part being

controlled by external force instead of using joint torques [4].

However, [5] uses prerecorded motion capture data to

reproduce the animation of human locomotion with

combination of physics based system thus creating a hybrid

approach. While Yin et al. in their remarkable work on

SIMBICON, uses simple finite state machine and poses

control graph with each joint angle controlled using

Proportional Derivative(PD) to produce a large variety of

biped locomotion gaits and styles in real-time [1]. The

remarkable robustness of SIMBICON project was further

enhanced with controller adaptation by Yin et al. [6]. Wang,

Suwen[7] also optimized SIMBICON to achieve realistic

results by using biomechanically driven functions with more

human like gaits . Coros et al. [8] developed a control

strategy to simulate walking motions of biped using

proportional-derivative control with foot placement

technique based on an inverted pendulum model. The

Zeeshan Bhatti and Imdad Ali Ismaili are with Institute of Information and

Communication Technology, University of Sindh, Jamshoro. Shehnila Zardari is with

Department of Computer Science & Information Technology, NED University of

Engineering & Technology, Karachi. Hafiz Abid Mahmood Malik and Mostafa

Karbasi are with Department of Computer Science, International Islamic University

Malaysia.

Email: zeeshan.bhaati@usind.edu.pk, iai_a@yahoo.com, shehnilaz@neduet.edu.pk,

abid.malik@live.iium.edu.my, mostafa.karbasi@live.iium.edu.my.

Manuscript received Dec 13,2016; revised on Dec 23, 2016; accepted on Dec 27, 2016.

mailto:zeeshan.bhaati@usind.edu.pk
mailto:iai_a@yahoo.com
mailto:shehnilaz@neduet.edu.pk
mailto:abid.malik@live.iium.edu.my

Bahria University Journal of Information & Communication Technologies Vol. 9, Issue 2, December 2016

Page 2 ISSN – 1999-4974

physics of gravity and velocities errors with virtual forces

were adjusted using Jacobian transpose control. The use of

an inverted pendulum model (IPM) was used in [8] for biped

animation where authors used generalization according to

the character size. However, the two main problems with

using physics passed simulation systems are also addressed

in [9].

II. SYSTEM DESIGN AND ARCHITECTURE

 The mathematical expression component is based on

trigonometric equations that consists of sine and cosine

function with control parameters. This mathematical model

and formula has been adopted from the work of [10][11][12].

The expressions are applied on each body part individually to

generate periodic motion for each gait. The user input is

provided through the GUI that derives and controls the gait

behaviour during runtime as discussed in [13]. The resulting

motion curve is summed over and applied on the dynamic

dual layer based quadruped rig for final output. The overview

of this animation system based on procedural modelling is

shown in Figure 1.

Fig. 1 Overview of Procedural Animation System [12]

A. Sine Function Justification

 In order to develop a basic and simple motion equation,

we started with trigonometric sine function. As the primary

aim was to develop a procedural animation methodology

which is easily implemented, fast and simple to use, thus the

sine function was a perfect choice for generating the motion

curves with oscillating phase. The sine function

characteristics allow the motion frequency to be controlled

with varying amplitudes and phases of the motion curve as

discussed in [12][11]. Therefore, as the natural skeletal joint

trajectories are simple sinusoidal patterns, thus the

oscillating motion of leg joints follow this sine wave

approximately. This nominal stepping sine wave is then

controlled using the coupled oscillator model- adopted form

[14][15] with Central Pattern Generator system extended

from the work of [16], implemented on biped locomotion

using non-linear oscillators.

III. BIPED EXPRESSIONS

 For generating the procedural motion of a biped

character, the skeletal rig has been segregated into five main

sections [17][18]. The five sections consist of Chest/neck,

Arms, Legs and Pelvis/Spine sections. The expressions of

each body section is calculated and implemented separately.

The forward motion of the biped characters is calculated

from the basic trigonometric sine and cosine functions.

Initially three main parameters were defined and used to

calculate the torque in forward direction. The motion

velocity (vM) controls how fast or slow the character moves

during various gaits. By changing this parameter alone the

motion gaits of character is altered at runtime. The time ‘T’

parameter is time in frames per second and is obtained from

the Maya system. Finally, the phase of angular motion ‘𝜙’ is

used to alternate the phase of the motion frequency.

A. Pelvic and Spine Expressions

 The pelvic region along with the entire spine is the key

part of the body that determines and gives a solid stability to

the entire body during motion. Various parameters have been

used here to control and customize the motion of pelvic or

hip region.

 Equation (1) produces the basic movement of the pelvic

joint in y-direction. This pelvic region behaves as the main

center of mass of biped and thus is the root of our character.

f(pelvis) = sin(T ∗ vM ∗ ϕ) ∗ ωB (1)

 Where, T is the Time in frames > 1, vM velocity of the

forward Motion which is always > 0 and 𝜙 is the phase of

angular motion. The angular frequency of body oscillation is

controlled by 𝜔𝐵 parameter. These four variables are used in

conjunction with trigonometric sine functions to generate the

initial cyclic equations used for biped motion.

 Similarly, the chest oscillation in forward and backward

direction is controlled using the ‘𝜔𝐶’ variable in (2). The

equation (2) generates the motion of upper body involving

spine, chest and shoulders.

f (spine) =sin (T * vM * k) * ωC (2)

 Where, ‘k’ is a constant whose value is between 0 and 5,

used here for optimization purpose and is adjusted according

to the size of the character.

 The motion of hip oscillation is controlled by Hosc,

whereas the height and position of the hips section is

manipulated using the Hhgt and Hpos attributes.

 The attributes to control shoulder motion are also similar

yet separately defined as Sosc is used for Shoulder

Oscillation. The Shgt and Spos are used to control the

Shoulder height and position with respect to chest joint. Now

the transformation of each spine deformer (the cluster) is

driven using the mathematical expressions, combining the

custom attributes with motion equations discussed in

previous section. The cluster handle located near the

shoulder joint (StY and StZ) is translated in y-axis and z-axis

along with shoulder height and body oscillating parameter.

The Jerror constant is used for error reduction with value of

0.85.

Bahria University Journal of Information & Communication Technologies Vol. 9, Issue 2, December 2016

Page 3 ISSN – 1999-4974

StY = Shgt + Tz * ωB - Jerror (3)

StZ = Tz * Sosc – Spos – f(spine)- Hpos (4)

 The Tz parameter is the Translate in z-axis obtained

from equation (9) and Sosc is Shoulder Oscillation attribute.

In order to modify the above equation for base cluster

control, we use (4) with body oscillation and hip position to

translate the cluster in z-axis. For translation in y-axis, (4) is

multiplied with hip oscillating attribute and divided with a

constant value of 4 to reduce the overshoot error. Further

equation (1) is used along with hip height (Hhgt) and Jerror

with value 0.523 used for optimization.

CtZ = Tz * ωB – Hpos (5)

CtY = Tz * Hosc / 4 + f(pelvis) + Hhgt - Jerror (6)

 The main spine IK controller which is located near the

shoulder cluster control is translated with the shoulder cluster

with minor modification of the value to reduce the error and

optimize the animation control. Hence, the Jerror attribute is

introduced with value 0.8 for translation in y-axis and 0.02

for z-axis respectively.

 StY (ik) = StY + Jerror

 StZ (ik) = StZ - Jerror (7)

B. Legs and Feet Expressions

 The motion of the legs is the most significant part of

biped locomotion. The timing curve and torque of each leg

joints determines the gait type of the character during

motion.

 The distance of foot from the ground is measured using

‘Δf’ in (8) that determines distance of the foot from the

ground while in motion. Using this variable we control how

close or high the foot must be from the ground during the

motion (for example when cycling the foot must be very high

as compared to walking). The equation (8) and (9) calculate

the basic translation values in ‘y’ (Ty) and ‘z’ (Tz) axis

respectively.

 ty = sin (T * vM) + Δf (8)

 tz = cos (T * vM) (9)

 For maximum control over the animation we have used

separate parameters and expression to control each leg

individually. The parameters used for controlling the foot

height from the ground during motion are FhgtR & FhgtL for

right and left legs respectively. The FposR & FposL control

the position of foot with respect to the root of body. The

attribute to controls the length of the stride are SlgtR & SlgtL.

All these attributes are user defined and controlled by the

user through easy to use interface. These attributes affect the

amplitude of the motion and alters the gaits at runtime.

 For optimizing the error correction in floor contact

phase of foot, (1) is modified and fine-tuned to (10). In (10)

the value of α is set to 70 and the Jerror for our joint error

optimization is set to 20. This value may vary for different

characters depending on the size of leg (from up_leg joint to

ankle joint) and also the size of foot (from ankle joint to

toe_end joint). So some manual tweaking is required for

different characters. The F in (5) then is used to generate

accurate transformation of foot IK handle and for left foot

the equation is reversed by simply negating its value.

 F = sin (T * 𝑣𝑀 - k) / Jerror (10)

The expression driven implementation for involuntary leg

motion is given below. The expressions are now simple

mathematical calculations using the equations and

parameters discussed previously. The basic translation of

each IK based foot controller, in y-axis is achieved using (8)

with foot height parameter of each leg. For translation in z-

axis, (9) is multiplied with stride length and foot position.

This gives us the forward motion of each leg depending on

the length of stride and the position of foot during each gate.

RightFoot_CTRL.translateY = Ty * FhgtR (11)

RightFoot_CTRL.translateZ = -Tz * SlgtR + FposR

LeftFoot_CTRL.translateY = (-Ty) * FhgtL; (12)

LeftFoot_CTRL.translateZ = -Tz * SlgtL + FposL

The toe of each foot is individually controlled using (10)

translation, in y-axis of the Toe_IK controller. This is again

done on toe_ik controller of each leg separately.

RightToe_IK.tY = F

 LeftToe_IK.tY = - (F) (13)

 Finally the expression for right up-leg joint motion is

implemented using (9) with hip oscillation and Hip position

attributes to add flexibility at pelvic region during the

motion. The z-axis of the up-leg joints is driven using (1)

with (8) as shown below.

RightUpLeg.tZ = tz * Hosc - Hpos (14)

RightUpLeg.tY = Hhgt + f(pelvis) – ty * Hosc

LeftUpLeg.tZ = -Tz * Hosc – Hpos (15)

LeftUpLeg.tY = Hhgt + f(pelvis) - ty * Hosc

C. Shoulders and Arms Expressions

 Arms are the most expressive part of human body. Their

motion is usually independent of any gait behavior and

usually unique to each character personality. The cyclic

swing motion of arm has few additional attributes to cater

such type of personality traits. Initially we control the

bounciness of the arm from shoulder to the wrist joint using

the AbncR and AbncL attribute for each right and left arms

respectively. As with the legs, each arm is also controlled and

manipulated separately from each other to increase the

naturalness and provide advance level of control to the arm

motion. Therefore, the frequency of swing motion of each

arm is controlled using the ω(ra)
 & ω(la)

 parameters. The

position of each Wrist motion in forward and back direction

Bahria University Journal of Information & Communication Technologies Vol. 9, Issue 2, December 2016

Page 4 ISSN – 1999-4974

with respect to the shoulder joint is controlled by WposR and

WposL. The standard length of arm in relaxed pose is

measured by wrist being near the hips or pelvic region. The

WhgtR and WhgtL determine the highness of the wrist with

respect to the pelvic joint. By modifying this parameter the

user can control the location of wrist to make it near the

pelvis or near the chest or face or even high above the head.

This change will be updated in real-time. Finally the WoscR

and WoscL attribute is used to control the overall oscillation

of the wrist. Hence, by using these attributes an advance level

of control can be achieved with complete customization

according to the requirements of the animator.

 The basic swing motion of hand is generated using (16).

Where the torque is calculated using arm bounce attribute

and time, with sine function. Just like legs motion of each

arm is also calculated individually. The value of constant α

is set to 2 here.

AR = sin (time * 2 * AbncR);

 AL = sin (time * 2 * AbncL); (16)

 The IK handle based controllers of each arm rig is

translated in y-axis using (1) along with the arm height and

oscillation attributes. The translation of IK controller in

z-axis is achieved by using (9), arm motion frequency and

position attributes.

 RightArm_IK.tY = AhgtR - AR * AoscR (17)

RightArm_IK.tZ = -Tz * ω(ra) + AposR

LeftArm_IK.tY = AhgtL – AL * AoscL (18)

LeftArm_IK.tZ = Tz * ω(la) + AposL

 The expression of shoulder involves multiplying (8)

with (2) for y-axis and multiplying (9) with (2) for z-axis as

shown below.

 RightShoulder.tY = - Ty * f(spine) (19)

RightShoulder.tZ = Tz * f(spine)

 LeftShoulder.tY = Ty * f(spine) (20)

LeftShoulder.tZ = - Tz * f(spine)

IV. RESULTS AND DISCUSSIONS

 A simple to use graphical User Interface (GUI) was

created having simple sliders for manipulating the

parameters of the equation discussed previously. Modifying

these attribute will affect the behavior of the biped motion at

real-time as the motion is generated using expressions inside

MAYA. Each body part is controlled and manipulated

individually.

 The Height of Shoulder motion is controlled using a

High parameter as shown in Figure 2 (From left to right,

high=0.6, high=0.2, high=0.807). When the height of

shoulder is set to a low value then the character body is also

pulled down and almost a crouching motion is created.

 Similarly, a position parameter shown in Figure 3,

controls the forward and backward position of the shoulder-

chest. With default normal position is set to 0.

Fig. 2 Shoulder Height Parameter Effect

Fig. 3 Shoulder position Parameter Effect

Bahria University Journal of Information & Communication Technologies Vol. 9, Issue 2, December 2016

Page 5 ISSN – 1999-4974

 The foot ground parameter controls the distance and

height of each stride from the ground shown in Figure 4. This

parameter is particularly useful when character is climbing

stairs or cycling.

Fig. 4 Foot Ground Distance Parameter Result

 Whereas, the height of the arm motion is controlled

using the Highness parameter as shown in Figure 5.

 Similarly, another parameter called Front controls the

forward and backward position of the arm motion as shown

in Figure 6.

Fig. 5 Height of Arm

Fig. 6 Front Position of Arm

 Whereas, the foot stride height is controlled using the

Height from Ground parameter as shown in Figure 7.

Fig. 7 Height of leg from ground

Bahria University Journal of Information & Communication Technologies Vol. 9, Issue 2, December 2016

Page 6 ISSN – 1999-4974

 The final walk cycle simulation is shown in Figure 8,

where a standard biped character is shown walking with

natural gait.

Fig. 8 Walk Cycle

 Alternately, a slightly abnormal motion is shown in

Figure 9, where the character is walking with crouching gait.

Fig. 9 Walk with Feet High from the ground

V. CONCLUSION AND FUTUREWORK

 In this paper a mathematical approach to

generating procedural animation had been discussed

using expression in MAYA. The mathematical

equations were based on geometric trigonometric

functions on procedurally generate rigged character

skeleton. Each body part was individually controlled

through mathematical expressions applied on the

body controllers. The entire system is procedurally

generated and the user is presented with a complete

rigged character with simulation. The final results of

biped walk motion is easily generated with few click

and is highly believable. By altering few parameters,

more variations in biped motion can be achieved.

 There still remains substantial enhancements to

be done in the system for the motion to be extremely

realistic with multiple gait locomotion’s. The

equations need to be further optimized and tweaked

to get best results. Moreover the equations can be

enhanced and extended to generate more motions like

run, jog, jumping and climbing etc. furthermore the

gait transition has to be corrected and optimized for

accurate and smoother transition from one gait type to

another during runtime.

Appendix – A

List of Symbols

 Symbol Description

1. 𝑣𝑀 Velocity of the forward Motion

2. f Frequency

3. v Velocity

4. T Time

5. f(pelvis) Frequency of Pelvic Joint

6. ϕ Phase

7. ω Angular Frequency / Oscillation

8. ωB Angular Frequency of Body

9. d Frequency of Spine

10. k Constant

11. 𝜔𝐶 Angular Frequency of Body

Hip and Spine parameters

12. Hosc Hip Oscillation

13. Hhgt Hip Height

14. Hpos Hip Position form Ground

15. Sosc Spine Oscillation

16. Shgt Spine Height

17. Spos Spine Position form Ground

18. StY Shoulder Translate in Y-axis

19. StZ Shoulder Translate in Z-axis

20. Jerror Joint Error optimization

21. CtY Chest Translet in Y-axis

22. CtZ Chest Translet in Z-axis

23. StY (ik) Spine IK-handle Translate in Y-axis

24. StZ (ik) Shoulder IK-handle Translate in Z-axis

Leg Parameter

25. ty Translate in y-axis

26. Tz Translate in z-axis

27. Δf Distance of Foot from Ground

28. FhgtR Right foot height from the ground

during motion

29. FhgtL Left foot height from the ground during

motion

30. FposR position of Right foot with respect to the

root of body

31. FposL position of Left foot with respect to the

root of body

32. SlgtR Right leg Stride Length

33. SlgtL Left leg Stride Length

34. F Foot Translate

Arm Parameters

35. AbncR bounciness of Right arm

36. AbncL bounciness of Left arm

37. ω(ra) frequency of Right arm swing Motion

38. ω(la) frequency of Left arm swing Motion

39. WposR position of Right Wrist

40. WposL position of Left Wrist

41. WhgtR highness of Right Wrist

42. WhgtL highness of Left Wrist

43. WoscR oscillation of Right wrist

44. WoscL oscillation of Left Wrist

Bahria University Journal of Information & Communication Technologies Vol. 9, Issue 2, December 2016

Page 7 ISSN – 1999-4974

REFERENCES

[1] K. Yin, K. Loken, and M. Van De Panne, “SIMBICON :
Simple Biped Locomotion Control,” ACM Trans. Graph., vol.

26, no. 3, p. 105, 2007.

[2] B. Kenwright, “Real-Time Physics-Based Fight Characters,”

no. September, 2012.

[3] J. Laszlo, M. van de Panne, and E. Fiume, “Interactive control

for physically-based animation,” Proc. 27th Annu. Conf.

Comput. Graph. Interact. Tech. - SIGGRAPH ’00, pp. 201–

208, 2000.

[4] I. D. Horswill, “Lightweight Procedural Animation with

Believable Physical Interactions,” Comput. Intell. AI Games,

IEEE Trans., vol. 1(1), pp. 34–49, 2009.

[5] Y. Lee, S. Kim, and J. Lee, “Data-Driven Biped Control,”

ACM Trans. Graph., vol. 29, no. 4, p. 129, 2010.

[6] K. Yin, S. Coros, P. Beaudoin, and M. van de Panne,

“Continuation methods for adapting simulated skills,” ACM

Trans. Graph., vol. 27, no. 3, p. 1, Aug. 2008.

[7] S. Wang, “Simple Quadruped Simulation,” pp. 1–5, 2010.

[8] S. Coros, P. Beaudoin, and M. van de Panne, “Generalized

Biped Walking Control,” ACM Transctions Graph., vol. 29,

no. 4, p. Article 130, 2010.

[9] T. Geijtenbeek and N. Pronost, “Interactive Character

Animation Using Simulated Physics: A State-of-the-Art

Review,” Comput. Graph. Forum, vol. 31, no. 8, pp. 2492–

2515, Dec. 2012.

[10] J. Zajac, “Biped Animation Using Mathematical Expressions

in Maya,” Proc. CESCG’03 (Central Eur. Semin. Comput.

Graph., pp. 1–5, 2003.

[11] Z. Bhatti, “Procedural Model of Horse Simulation,” in 12th

ACM SIGGRAPH International Conference on Virtual-

Reality Continuum and Its Applications in Industry (VRCAI

’13)., 2013, pp. 139–146.

[12] Z. Bhatti, A. Shah, A. Waqas, and M. Karbasi, “Automated

animation of quadrupeds using procedural programming

technique,” Asian Journal of Scientific Research. vol. 8, no. 2,

pp. 165–181, 2015.

[13] Z. Bhatti, A. Shah, M. Karabasi, and W. Mahesar, “Expression

driven Trignometric based Procedural Animation of

Quadrupeds,” in International Conference on Informatics and

Creative Multimedia 2013 (ICICM’13), 2013, pp. 1–6.

[14] J. Morimoto, G. Endo, S.-H. Hyon, and G. Cheng, “A simple

approach to diverse humanoid locomotion,” 2007 7th IEEE-

RAS Int. Conf. Humanoid Robot., pp. 596–602, Nov. 2007.

[15] J. Morimoto, S. Hyon, G. Cheng, D. Bentivegna, and C. G.

Atkeson, “Modulation of simple sinusoidal patterns by a

coupled oscillator model for biped walking,” in Proceedings

2006 IEEE International Conference on Robotics and

Automation, 2006. ICRA 2006., 2006, no. May, pp. 1579–

1584.

[16] J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, and

M. Kawato, “Learning from demonstration and adaptation of

biped locomotion,” Rob. Auton. Syst., vol. 47, no. 2–3, pp. 79–

91, Jun. 2004.

[17] Z. Bhatti and A. Shah, “Widget based automated rigging of

bipedal character with custom manipulators,” Proc. 11th ACM

SIGGRAPH Int. Conf. Virtual-Reality Contin. its Appl. Ind. -

VRCAI ’12, p. 337, 2012.

[18] Bhatti, Z., Shah, A., Shahidi, F., & Karbasi, M. (2014).

Forward and inverse kinematics seamless matching using

Jacobian. Sindh University Research Journal (Science Series)

Volume 45 (2) . arXiv preprint arXiv:1401.1488. pp:387-392.

