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Procedural Animation of 3D Humanoid Characters Using Trigonometric 

Expressions 
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 Abstract – This paper discusses a technique of generating 

procedural animation of bipedal characters through 

expressions in Maya using trigonometric functions. The 

character skeleton of bipeds is procedurally generated using a 

template based widgets mechanism. The skeletal joints created 

and rigging is done through a procedural programming 

technique based on the underlying widget structure. The 

expressions using trigonometric functions are then applied on 

each body part to produce procedural motion. The entire 

system is procedurally generated and the user is presented with 

a complete rigged character with simulation. The various 

parameters of the animation are then controlled by and easy to 

use graphical user interface, which allows the animator to 

further manipulate and customize the animation. All the 

changes in the parameters are reflected in the simulated 

skeleton in real-time. Using these trigonometric equations, 

various types of biped motions are generated and controlled at 

runtime dynamically, producing a wide range of animations 

which can be easily customized and further extended according 

to the requirements of the scene. 

 

 Index Terms – Animation, Biped, Procedural motion, 

Simulation. 

 

I. INTRODUCTION 

 
 The vastly growing movie and game industry with ever 

increasing demand of realistic animation of 3D characters has 

increased the challenges posed to a 3D artist. There is an 

ongoing debate among the leading animators and production 

studio over quality verses quantity of the animation. As the 

amount of projects increase every year and human resource 

of qualified animators is scarcely available, the production 

studios harshly demand a large quantity of animation 

produced in a short time.  This is one of the major reason that 

most of the large production studios are forced to use motion 

capture for producing realistic animation quickly and 

accurately. 

 The key-frame being a traditional approach takes a huge 

time to render a realistic looking animation. There is a big 

time loss, but with motion capture the time is reduced, 

consequently increasing other complications like the cost of 

motion capture sensors, specially trained personals, hardware 

and software requirements etc. Finally the procedural 

animation comes into the picture. With the advent of 

technology and algorithms it seems a lot easier to write an 

algorithm that would simply move a character according to 

its biological gaits with locomotion parameters and producing 

a realistic looking animation with a single click of a button. 

Obviously this approach also has various unfeasible 

constraints that limit its usability and practical 

implementation. First, the algorithms to produce a realistic 

motion are very complex especially when physics based 

dynamic motions are to be achieved.  Algorithms are then 

usually tested and implemented in a special environment 

using particular tools like SIMBICON [1], Open Dynamic 

Engine (ODE) [2] are but few. Application of these tools is 

good for research purpose, however, in practice it is difficult 

to implement these algorithms in professional software like 

MAYA. Hence, most of this work is limited to research only, 

rather than actual implementation. The major setback of such 

procedural animation methodologies is that these are hardly 

customizable. The animator is unable to change and modify a 

large part of the motion that is obtained procedurally and is 

stuck with what the programmer has programed the 3D 

character to do. In this project we have addressed this issue of 

practical usability, simplicity of motion equations and 

customization of procedurally generated animation. 

 The area of biped simulation is extensively researched 

and discussed in the computer graphics industry due to its 

importance in animation, robotics and biomechanics. Various 

algorithms and techniques have been addressed for 

generating realistic looking simulation or animation of 

humanoid characters locomotion’s. The problem of 

developing physics based kinematics or dynamic motions 

models for generating complex human motion is still 

considered a challenging problem [3].  

 Laszlo et al. has developed an interactive user-in-the-

loop technique for controlling physics based animation by 

interactively controlling the planer dynamic simulation using 

a mouse and keyboard [3]. Whereas, I. D. Horswill uses 

kinematics based model through procedural animation to 

produce realistic dynamic motion with each body part being 

controlled by external force instead of using joint torques [4]. 

However,  [5] uses prerecorded motion capture data to 

reproduce the animation of human locomotion with 

combination of physics based system thus creating a hybrid 

approach. While Yin et al. in their remarkable work on 

SIMBICON, uses simple finite state machine and poses 

control graph with each joint angle controlled using 

Proportional Derivative(PD) to produce a large variety of 

biped locomotion gaits and styles in real-time [1]. The 

remarkable robustness of SIMBICON project was further 

enhanced with controller adaptation by Yin et al. [6]. Wang, 

Suwen[7]  also optimized SIMBICON to achieve realistic 

results by using biomechanically driven functions with more 

human like gaits . Coros et al. [8] developed a control 

strategy to simulate walking motions of biped using 

proportional-derivative control with foot placement 

technique based on an inverted pendulum model. The 

 

 

Zeeshan Bhatti and Imdad Ali Ismaili are with Institute of Information and 

Communication Technology, University of Sindh, Jamshoro. Shehnila Zardari is with 

Department of Computer Science & Information Technology, NED University of 

Engineering & Technology, Karachi. Hafiz Abid Mahmood Malik and Mostafa 

Karbasi are with Department of Computer Science, International Islamic University 

Malaysia. 

Email: zeeshan.bhaati@usind.edu.pk, iai_a@yahoo.com, shehnilaz@neduet.edu.pk, 

abid.malik@live.iium.edu.my, mostafa.karbasi@live.iium.edu.my. 

Manuscript received Dec 13,2016; revised on Dec 23, 2016; accepted on Dec 27, 2016. 

mailto:zeeshan.bhaati@usind.edu.pk
mailto:iai_a@yahoo.com
mailto:shehnilaz@neduet.edu.pk
mailto:abid.malik@live.iium.edu.my


Bahria University Journal of Information & Communication Technologies Vol. 9, Issue 2, December 2016 

Page 2  ISSN – 1999-4974 

physics of gravity and velocities errors with virtual forces 

were adjusted using Jacobian transpose control. The use of 

an inverted pendulum model (IPM) was used in [8] for biped 

animation where authors used generalization according to 

the character size. However, the two main problems with 

using physics passed simulation systems are also addressed  

in [9]. 

 

II. SYSTEM DESIGN AND ARCHITECTURE 

 
 The mathematical expression component is based on 

trigonometric equations that consists of sine and cosine 

function with control parameters. This mathematical model 

and formula has been adopted from the work of [10][11][12]. 

The expressions are applied on each body part individually to 

generate periodic motion for each gait. The user input is 

provided through the GUI that derives and controls the gait 

behaviour during runtime as discussed in [13]. The resulting 

motion curve is summed over and applied on the dynamic 

dual layer based quadruped rig for final output. The overview 

of this animation system based on procedural modelling is 

shown in Figure 1. 

 
 

Fig. 1 Overview of Procedural Animation System [12] 

 

A. Sine Function Justification 

 In order to develop a basic and simple motion equation, 

we started with trigonometric sine function. As the primary 

aim was to develop a procedural animation methodology 

which is easily implemented, fast and simple to use, thus the 

sine function was a perfect choice for generating the motion 

curves with oscillating phase. The sine function 

characteristics allow the motion frequency to be controlled 

with varying amplitudes and phases of the motion curve as 

discussed in [12][11]. Therefore, as the natural skeletal joint 

trajectories are simple sinusoidal patterns, thus the 

oscillating motion of leg joints follow this sine wave 

approximately. This nominal stepping sine wave is then 

controlled using the coupled oscillator model- adopted form 

[14][15] with Central Pattern Generator system extended 

from the work of [16], implemented on biped locomotion 

using non-linear oscillators. 
 

III. BIPED EXPRESSIONS 
  

 For generating the procedural motion of a biped 

character, the skeletal rig has been segregated into five main 

sections [17][18]. The five sections consist of Chest/neck, 

Arms, Legs and Pelvis/Spine sections.  The expressions of 

each body section is calculated and implemented separately. 

The forward motion of the biped characters is calculated 

from the basic trigonometric sine and cosine functions. 

Initially three main parameters were defined and used to 

calculate the torque in forward direction. The motion 

velocity (vM) controls how fast or slow the character moves 

during various gaits. By changing this parameter alone the 

motion gaits of character is altered at runtime. The time ‘T’ 

parameter is time in frames per second and is obtained from 

the Maya system. Finally, the phase of angular motion ‘𝜙’ is 

used to alternate the phase of the motion frequency. 

 

A. Pelvic and Spine Expressions 

 The pelvic region along with the entire spine is the key 

part of the body that determines and gives a solid stability to 

the entire body during motion. Various parameters have been 

used here to control and customize the motion of pelvic or 

hip region.  

 

 Equation (1) produces the basic movement of the pelvic 

joint in y-direction. This pelvic region behaves as the main 

center of mass of biped and thus is the root of our character. 

 

f(pelvis) = sin(T ∗  vM ∗ ϕ ) ∗ ωB  (1) 

 

 Where, T is the Time in frames > 1, vM velocity of the 

forward Motion which is always > 0 and 𝜙 is the phase of 

angular motion. The angular frequency of body oscillation is 

controlled by 𝜔𝐵 parameter. These four variables are used in 

conjunction with trigonometric sine functions to generate the 

initial cyclic equations used for biped motion. 

 

 Similarly, the chest oscillation in forward and backward 

direction is controlled using the ‘𝜔𝐶’ variable in (2). The 

equation (2) generates the motion of upper body involving 

spine, chest and shoulders.  

 

f (spine) =sin (T * vM * k) * ωC   (2) 

 

 Where, ‘k’ is a constant whose value is between 0 and 5, 

used here for optimization purpose and is adjusted according 

to the size of the character.  

 The motion of hip oscillation is controlled by Hosc, 

whereas the height and position of the hips section is 

manipulated using the Hhgt and Hpos attributes.  

 The attributes to control shoulder motion are also similar 

yet separately defined as Sosc is used for Shoulder 

Oscillation. The Shgt and Spos are used to control the 

Shoulder height and position with respect to chest joint. Now 

the transformation of each spine deformer (the cluster) is 

driven using the mathematical expressions, combining the 

custom attributes with motion equations discussed in 

previous section. The cluster handle located near the 

shoulder joint (StY and StZ) is translated in y-axis and z-axis 

along with shoulder height and body oscillating parameter. 

The Jerror constant is used for error reduction with value of 

0.85.  
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StY = Shgt + Tz * ωB  - Jerror                   (3) 

 

StZ = Tz * Sosc – Spos – f(spine)- Hpos  (4) 

 

 The Tz parameter is the Translate in z-axis obtained 

from equation (9) and Sosc is Shoulder Oscillation attribute. 

In order to modify the above equation for base cluster 

control, we use (4) with body oscillation and hip position to 

translate the cluster in z-axis. For translation in y-axis, (4) is 

multiplied with hip oscillating attribute and divided with a 

constant value of 4 to reduce the overshoot error. Further 

equation (1) is used along with hip height (Hhgt) and Jerror 

with value 0.523 used for optimization. 

 

CtZ = Tz * ωB  – Hpos     (5) 

 

CtY = Tz * Hosc / 4 + f(pelvis) + Hhgt - Jerror       (6) 

 

 The main spine IK controller which is located near the 

shoulder cluster control is translated with the shoulder cluster 

with minor modification of the value to reduce the error and 

optimize the animation control. Hence, the Jerror attribute is 

introduced with value 0.8 for translation in y-axis and 0.02 

for z-axis respectively. 

   StY (ik) = StY + Jerror                   

      StZ (ik) = StZ -  Jerror         (7) 

 

B. Legs and Feet Expressions 

 The motion of the legs is the most significant part of 

biped locomotion. The timing curve and torque of each leg 

joints determines the gait type of the character during 

motion.  

 The distance of foot from the ground is measured using 

‘Δf’ in (8) that determines distance of the foot from the 

ground while in motion. Using this variable we control how 

close or high the foot must be from the ground during the 

motion (for example when cycling the foot must be very high 

as compared to walking). The equation (8) and (9) calculate 

the basic translation values in ‘y’ (Ty) and ‘z’ (Tz) axis 

respectively. 

  

   ty = sin (T * vM ) + Δf     (8) 

 

   tz = cos (T * vM  )         (9) 

 

 For maximum control over the animation we have used 

separate parameters and expression to control each leg 

individually. The parameters used for controlling the foot 

height from the ground during motion are FhgtR & FhgtL for 

right and left legs respectively. The FposR & FposL control 

the position of foot with respect to the root of body. The 

attribute to controls the length of the stride are SlgtR & SlgtL. 

All these attributes are user defined and controlled by the 

user through easy to use interface. These attributes affect the 

amplitude of the motion and alters the gaits at runtime. 

 For optimizing the error correction in floor contact 

phase of foot, (1) is modified and fine-tuned to (10). In (10) 

the value of α is set to 70 and the Jerror for our joint error 

optimization is set to 20. This value may vary for different 

characters depending on the size of leg (from up_leg joint to 

ankle joint) and also the size of foot (from ankle joint to 

toe_end joint). So some manual tweaking is required for 

different characters. The F in (5) then is used to generate 

accurate transformation of foot IK handle and for left foot 

the equation is reversed by simply negating its value. 

 

  F = sin ( T * 𝑣𝑀 - k ) / Jerror    (10) 

 

The expression driven implementation for involuntary leg 

motion is given below. The expressions are now simple 

mathematical calculations using the equations and 

parameters discussed previously. The basic translation of 

each IK based foot controller, in y-axis is achieved using (8) 

with foot height parameter of each leg. For translation in z-

axis, (9) is multiplied with stride length and foot position. 

This gives us the forward motion of each leg depending on 

the length of stride and the position of foot during each gate. 

 

RightFoot_CTRL.translateY = Ty * FhgtR      (11) 

RightFoot_CTRL.translateZ = -Tz * SlgtR + FposR 

 

LeftFoot_CTRL.translateY = (-Ty) * FhgtL;      (12) 

LeftFoot_CTRL.translateZ = -Tz * SlgtL + FposL 

 

The toe of each foot is individually controlled using (10) 

translation, in y-axis of the Toe_IK controller. This is again 

done on toe_ik controller of each leg separately. 

 

RightToe_IK.tY = F 

 LeftToe_IK.tY = - (F)     (13) 

 

 Finally the expression for right up-leg joint motion is 

implemented using (9) with hip oscillation and Hip position 

attributes to add flexibility at pelvic region during the 

motion. The z-axis of the up-leg joints is driven using (1) 

with (8) as shown below.   

 

RightUpLeg.tZ = tz * Hosc - Hpos       (14) 

RightUpLeg.tY = Hhgt + f(pelvis) – ty * Hosc 

 

LeftUpLeg.tZ = -Tz * Hosc – Hpos       (15) 

LeftUpLeg.tY = Hhgt + f(pelvis) - ty * Hosc 

 

C.  Shoulders and Arms Expressions 

 Arms are the most expressive part of human body. Their 

motion is usually independent of any gait behavior and 

usually unique to each character personality. The cyclic 

swing motion of arm has few additional attributes to cater 

such type of personality traits. Initially we control the 

bounciness of the arm from shoulder to the wrist joint using 

the AbncR and AbncL attribute for each right and left arms 

respectively. As with the legs, each arm is also controlled and 

manipulated separately from each other to increase the 

naturalness and provide advance level of control to the arm 

motion. Therefore, the frequency of swing motion of each 

arm is controlled using the ω(ra)
  & ω(la)

 parameters. The 

position of each Wrist motion in forward and back direction 
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with respect to the shoulder joint is controlled by WposR and 

WposL. The standard length of arm in relaxed pose is 

measured by wrist being near the hips or pelvic region. The 

WhgtR and WhgtL determine the highness of the wrist with 

respect to the pelvic joint. By modifying this parameter the 

user can control the location of wrist to make it near the 

pelvis or near the chest or face or even high above the head. 

This change will be updated in real-time. Finally the WoscR 

and WoscL attribute is used to control the overall oscillation 

of the wrist. Hence, by using these attributes an advance level 

of control can be achieved with complete customization 

according to the requirements of the animator. 

 The basic swing motion of hand is generated using (16). 

Where the torque is calculated using arm bounce attribute 

and time, with sine function. Just like legs motion of each 

arm is also calculated individually. The value of constant α 

is set to 2 here.  

AR = sin ( time * 2 * AbncR ); 

  AL = sin ( time * 2 * AbncL);             (16) 

 

 The IK handle based controllers of each arm rig is 

translated in y-axis using (1) along with the arm height and 

oscillation attributes. The translation of IK controller in          

z-axis is achieved by using (9), arm motion frequency and 

position attributes. 

 

  RightArm_IK.tY = AhgtR - AR * AoscR     (17)  

RightArm_IK.tZ = -Tz * ω(ra)  + AposR 

 

LeftArm_IK.tY = AhgtL – AL * AoscL    (18) 

LeftArm_IK.tZ = Tz * ω(la)  + AposL 

 

 The expression of shoulder involves multiplying (8) 

with (2) for y-axis and multiplying (9) with (2) for z-axis as 

shown below. 

  RightShoulder.tY = - Ty * f(spine)         (19) 

RightShoulder.tZ = Tz * f(spine) 

 

  LeftShoulder.tY = Ty * f(spine)           (20) 

LeftShoulder.tZ = - Tz * f(spine) 

 

IV. RESULTS AND DISCUSSIONS 
  

 A simple to use graphical User Interface (GUI) was 

created having simple sliders for manipulating the 

parameters of the equation discussed previously. Modifying 

these attribute will affect the behavior of the biped motion at 

real-time as the motion is generated using expressions inside 

MAYA. Each body part is controlled and manipulated 

individually.  

 The Height of Shoulder motion is controlled using a 

High parameter as shown in Figure 2 (From left to right, 

high=0.6, high=0.2, high=0.807). When the height of 

shoulder is set to a low value then the character body is also 

pulled down and almost a crouching motion is created.  

 Similarly, a position parameter shown in Figure 3, 

controls the forward and backward position of the shoulder-

chest. With default normal position is set to 0. 

  

   

 
Fig. 2 Shoulder Height Parameter Effect 

 

  

 
Fig. 3 Shoulder position Parameter Effect 
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 The foot ground parameter controls the distance and 

height of each stride from the ground shown in Figure 4. This 

parameter is particularly useful when character is climbing 

stairs or cycling.  

 

   
 

Fig. 4 Foot Ground Distance Parameter Result 

 

 Whereas, the height of the arm motion is controlled 

using the Highness parameter as shown in Figure 5. 

 Similarly, another parameter called Front controls the 

forward and backward position of the arm motion as shown 

in Figure 6. 

 

 
 

    
Fig. 5 Height of Arm 

     

 
Fig. 6 Front Position of Arm 

 

 Whereas, the foot stride height is controlled using the 

Height from Ground parameter as shown in Figure 7. 

 

     

 
Fig. 7 Height of leg from ground 
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 The final walk cycle simulation is shown in Figure 8, 

where a standard biped character is shown walking with 

natural gait. 

 

 

 
Fig. 8 Walk Cycle 

 

 Alternately, a slightly abnormal motion is shown in 

Figure 9, where the character is walking with crouching gait. 

 

 
Fig. 9 Walk with Feet High from the ground 

 

V. CONCLUSION AND FUTUREWORK 

  

 In this paper a mathematical approach to 

generating procedural animation had been discussed 

using expression in MAYA. The mathematical 

equations were based on geometric trigonometric 

functions on procedurally generate rigged character 

skeleton. Each body part was individually controlled 

through mathematical expressions applied on the 

body controllers. The entire system is procedurally 

generated and the user is presented with a complete 

rigged character with simulation.  The final results of 

biped walk motion is easily generated with few click 

and is highly believable. By altering few parameters, 

more variations in biped motion can be achieved.  

 There still remains substantial enhancements to 

be done in the system for the motion to be extremely 

realistic with multiple gait locomotion’s. The 

equations need to be further optimized and tweaked 

to get best results. Moreover the equations can be 

enhanced and extended to generate more motions like 

run, jog, jumping and climbing etc. furthermore the 

gait transition has to be corrected and optimized for 

accurate and smoother transition from one gait type to 

another during runtime. 

 

 

Appendix – A 

List of Symbols 
 

 Symbol Description 

1.  𝑣𝑀 Velocity of the forward Motion 

2.  f Frequency 

3.  v Velocity 

4.  T Time 

5.  f(pelvis) Frequency of Pelvic Joint 

6.  ϕ Phase 

7.  ω Angular  Frequency / Oscillation 

8.  ωB Angular Frequency of Body  

9.  d Frequency of Spine 

10.  k Constant  

11.  𝜔𝐶 Angular Frequency of Body 

Hip and Spine parameters 

12.  Hosc Hip Oscillation 

13.  Hhgt Hip Height 

14.  Hpos Hip Position form Ground 

15.  Sosc Spine Oscillation 

16.  Shgt Spine Height 

17.  Spos Spine Position form Ground 

18.  StY Shoulder Translate in Y-axis 

19.  StZ Shoulder Translate in Z-axis 

20.  Jerror Joint Error optimization 

21.  CtY Chest Translet in Y-axis 

22.  CtZ Chest Translet in Z-axis 

23.  StY (ik) Spine IK-handle Translate in Y-axis 

24.  StZ (ik) Shoulder IK-handle Translate in Z-axis 

Leg Parameter 

25.  ty Translate in y-axis 

26.  Tz Translate in z-axis 

27.  Δf Distance of Foot from Ground 

28.  FhgtR Right foot height from the ground 

during motion 

29.  FhgtL Left foot height from the ground during 

motion 

30.  FposR position of Right foot with respect to the 

root of body 

31.  FposL position of Left foot with respect to the 

root of body 

32.  SlgtR Right leg Stride Length 

33.  SlgtL  Left leg Stride Length 

34.  F Foot Translate 

Arm Parameters 

35.  AbncR bounciness of Right arm 

36.  AbncL bounciness of Left arm 

37.  ω(ra) frequency of Right arm swing Motion 

38.  ω(la) frequency of Left arm swing Motion 

39.  WposR position of Right Wrist 

40.  WposL position of Left Wrist 

41.  WhgtR highness of Right Wrist 

42.  WhgtL highness of Left Wrist 

43.  WoscR oscillation of Right wrist 

44.  WoscL oscillation of Left Wrist 
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