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Abstract: 

A computational harmonic analysis technique, ETAP is 

developed from the first principle. A closed-form formula for 

harmonics addition is presented in this paper as the Harmonic 

Addition Theorem (HAT). Power of cosine formula is applied 

with mathematical pattern such as checker box triangle (CBT) to 

exactly compute the amplitude and phase of the harmonics at the 

output of a polynomial nonlinearity.  

 

Index Terms: Computational Harmonic Analysis, Harmonic 

Addition Theorem, Polynomials, and Harmonic Distortions. 

 

I. INTRODUCTION 

Let us define a polynomial nonlinearity as 
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where nh , and Q  denote the polynomial coefficient of the nth 

term, and the highest degree, respectively. Let us define the 

input single tone with arbitrary amplitude A and phase in φ 

radian as  

 ( ) cos( ),x t A t    (2) 

where   is the angular frequency in radian per second and t  

is the time in seconds.  

When the sinusoidal signal in (2) is applied to the 

polynomial nonlinearity in (1), the output can be represented 

as  
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where 0DC  is the DC component; kB  and k  are the 

amplitude and phase of the kth harmonic, respectively.  

The research problem is defined as follows: given (1) and 

(2), to compute (3). 

II. HARMONIC ADDITION THEOREM (HAT) 

The HAT is the key ingredient to solve the problem. 

Theorem: 
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Proof: Let ( )ex t  be denoted as a complex exponential 

function that is given by 
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where B  and   can be presented in terms of iA  and i  as 

shown in (4) and (5), respectively. For the computation of  , 

atan2 function [1] is used to exactly locate the angle in any of 

the four quadrants in the complex plane. The ordinary atan 

function range is, however, 2 2      in contrast to the 

atan2 function range of      . For the both cases of 

positive and negative angles in (6), let us define 
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Using (7), (8), and Euler’s formula, 
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III. EXACT TONAL ANALYSIS ON POLYNOMIALS (ETAP) 

By Demoivre’s formula, the following power of cosine 

trigonometric identity has been derived [2, 3]. 
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Exact Tonal Analysis on Polynomials (ETAP) 

for Computational Harmonic Analysis 

Nay Oo 
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Let us denote the output signal at the thn  degree polynomial 

branch in Fig. 1 as follows: 
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where 
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By (9), 
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are amplitude and phase of the kth harmonic at the nth term 

of the polynomial, respectively. By (1) and (10), 
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where ,n k  in (11) and (13) denotes the component generated 

at the n  degree polynomial branch and k  harmonic as 

illustrated in Fig. 1. When ,n k s are placed in the checker 

box, as shown in Fig. 2, the checker-box triangle (CBT) 

pattern is emerged. By (13), 

 , ,( ) .n k n k
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Thus, the component having the same frequency can be added 

together using (4) and (5). In pictorial representation (see Fig. 

2), the components in CBT are added vertically using HAT. 

In symbolic representation,  
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As a computational example, let (2) with 1A  and 2   

is applied into 3 5( ) 1.4214 0.7409 0.3313 .f x x x x   The 

output signal in (3) or (15) is obtained as 

 
( ) 1.7541cos( 2) 0.2590cos(3 2)

0.0888cos(5 2).
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IV. CONCLUSION 

 

A technique to compute the harmonic amplitudes, phases, 

and DC components at the output of polynomial nonlinearity 

was developed.  
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Fig. 2. Checker-box Triangle Pattern where each row and each column 

represent the component outputs from ( )ny t  and the generated harmonics 

with the exception of DC at 0k  , respectively. Sub-figures (a), and (c) 

illustrates the generated component fill-ups for the case of 5Q  , whereas 

(b), and (d) for 4Q  . The indices n  and k  denote the index of the 

coefficient of polynomial, which is equivalent to the index of ( )ny t  and 

harmonic number respectively. Note that the component is DC when 0k  . 
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Fig. 1. Block diagram representation of (1) for the case of 5Q  . Each 

branch represents (10), where their respective algebraic expansions are 

described in (11) and (12). 

 


