
Bahria University Journal of Information & Communication Technologies Vol. 11, Issue II, December 2018

Page 11 ISSN – 1999-4974

Study and Comparison of Various FPGA-based

Fault Injection Tools with RASP-FIT Tool for HDL Designs

Abdul Rafay Khatri

 Abstract – Fault injection technique is the most popular

technique for characterising the dependability parameter of

Very Large Scale Integrated (VLSI) systems and designs. Due

to technology scaling, Field Programmable Gate Array (FPGA)

systems are also prone to error and failure; hence fault injection

tools play a vital role to test and evaluate dependability

parameters. These tools are categorised into two techniques;

reconfiguration and instrumentation-based techniques for

FPGA fault injection tools. The primary focus is put on

instrumentation-based fault injection tools and techniques in

this paper. In the instrumentation technique, a specific circuit is

appended to the original design to carry out fault injection

analysis. This paper presents the comparison between various

fault injection tools based on methodology, fault models

consideration, fault injection control unit and functions they

perform.
 Index Terms – Dependability analysis, Instrumentation,

Fault injection, FPGA, Reliability, Fault tolerance.

I. INTRODUCTION

 FAULT Injection (FI) is one of the most well-known

techniques which is used in the evaluation of faults and to

check the capability of design in tolerating failures. The fault

injection technique performs different functions such as

detection of sensitive areas of design, validation of the design

for evaluating reliability, forecasting the output in the

presence of a fault. Broadly, fault injection techniques can be

arranged into four groups, i.e. hardware, software,

simulation, and emulation-based techniques. Fault injection

tools involving Field Programmable Gate Array (FPGA) are

classified into two types, i.e. the simulation-based and

emulation-based fault injection tools

[1].

 Nowadays, FPGA-based designs are widely used in

various safety-critical systems and space applications. The

SRAM-based FPGA designs cover nearly 60% of the

application because of multiple advantages it offers. To

increase the capacity, the size of components is reduced

continuously, making the SRAM-based FPGA devices and

applications faster, as well as; they become prone to errors

and failures. Therefore, FPGA-based devices must be tested

and checked for the dependability analysis. In this case,

FPGA-based fault injection techniques and tools play a vital

role to verify and validate the System Under Test (SUT). In

general, the simulation-based method allows greater

flexibility (i.e. observability and controllability) whereas, the

emulation technique provides the execution of experiments

in real time on FPGA platforms [2]. There are numerous

different causes for requiring FPGA in FI techniques, for

example, for simulation, designs models are available. Also,

for emulation on the FPGA platform, fast emulation can be

achieved. By the use of full & partial reconfiguration

techniques, area overhead issues are resolved. Therefore,

FPGA-based FI tools are classified into two classes, i.e.

instrumentation-based and reconfiguration-based fault

injection tools due to advantages of the FPGA mentioned

above (i.e. more area capacity and reconfiguration

technique), respectively.

 In the development of FI tools, a significant problem is

the definition of a FI mechanism also known as FI control

unit. This unit is designed by keeping some parameters in

mind, such as area overhead, the speed of injection (i.e. time

cost), selection and injection of particular faults [3]. This unit

consists of simple or complicated circuitry.

 The system reliability is one of the major concern in

today’s electronic applications. It is the most important

characteristic, which measures the quality of systems [4].

Fault injection techniques can also evaluate the reliability of

the SUT. The term reliability is described as “It is a

probability, which shows the correct functioning of the

design even in the presence of faults” [5], [6]. Reliability is

the measure of how good a system is and how often it goes

down [7]. There are specific techniques which are used more

widely for the improvement of reliability such as, triple

modular redundancy, hardened memory cell level, multiple

redundancies with voting, and error detection and correction

coding.

 In this paper, two categories of FPGA-based fault

injection tools are described along with the FI environment

of general tools and tools for the FPGA. Modern FPGAs are

enriched with the capacity and fast (full & partial)

reconfiguration capabilities. Therefore, various FI

techniques and tools are studied and compared according to

the types of the method employed, fault model used, and

functions they performed for FPGA-based designs. The

proposed RASP-FIT tool (detail in Section IV) is an

instrumentation-based FI tool and compared with the tools

available.

 This paper is structured as follows: Section II explains

the general environment of FI tools. The environment

specifically for FPGA-based FI tools are presented in Section

III, and it also includes the various FI tools in detail. Section

IV describes the proposed fault injection tool. The

comparison between the tools is presented tabularly in

Section V. In the end, the conclusion of the paper is described

in Section VI.

Abdul Rafay Khatri is with Department of Computer Architecture and

System Programming, University of Kassel, Kassel, Germany. Email:

arkhatri@student.uni-kassel.de. Manuscript received on May 06, 2019,

revised on Aug 09, 2019 and accepted on Aug 23, 2019.

Bahria University Journal of Information & Communication Technologies Vol. 11, Issue II, December 2018

Page 12 ISSN – 1999-4974

II. GENERAL FAULT INJECTION SYSTEM

ENVIRONMENT

 Fault injection techniques can be applied to both

hardware and software systems to measure fault-tolerance

and robustness. The environment for hardware and software

systems is different. In a hardware system, faults can be

injected on a pin level or an internal level of chips; also faults

can be inserted into the simulation of the system prototype.

For software, faults are injected into the software program

during compile time or run-time in the instructions in Central

Processing Unit (CPU) registers to networks. Therefore, the

fault injection environment is designed according to the

system characterization. A minimal general fault injection

system is composed of three fundamental modules [8], [9],

[10], as shown in Figure 1.

1) Fault List Manager (FLM)

2) Fault Injection Manager (FIM)

3) Result Analyser (RA)

A. Fault List Manager (FLM)

 The FLM is the basic block in the fault injection

environment of any tool, which is responsible for the

generation of the Fault-List and Fault-Type injected into the

various part of the SUT. Fault locations are assumed to be

equally probable for designs. This module generates faults at

all possible locations in the target system. Furthermore, it

sends information to the next critical module FIM.

B. Fault Injection Manager (FIM)

 The most critical module in the FI environment is the

fault injection manager. The complexity of this module is

proportional to the size of the target system. Functions of this

module are selecting a particular fault, activating the fault

and observing its resulting behaviour on the target system

[8].

C. Result Analyser

 This module can be designed to perform various

functions. The primary features of the module are collecting

and analysing the results/responses from the whole

experiment and producing the statistical reports accordingly.

For example, in fault injection testing approach, static

compaction technique is part of this module, which generates

compact test vectors, Fault Coverage (FC) and so on.

III. ENVIRONMENT OF FAULT INJECTION TOOL

FOR FPGAS

 FPGA-based fault injection tools have benefits of both

physical and simulation-based method, such as speed and

flexibility. The design & development flow for FPGA

systems consist of many steps, where design modification is

possible for the fault injection analysis. The significant points

of modification are in the design’s code, gate-level net-list,

place & route file and the bit-stream file [11]. Figure 2 shows

the various points of modification of the FPGA designs [11].

These tools are classified into two techniques, i.e.

reconfiguration-based and instrumentation-based FI tools.

Many state-of-the-art FI tools have been proposed and

presented in the literature for FPGA-based designs, which

insert faults at different stages of development flow for

assessing design characteristics for FPGA-based designs.

Fig. 1 General fault injection environment for FI tools [3]

A. Reconfiguration-based FI Tools

 Reconfiguration or partial reconfiguration is the

technique in which configuration memory of FPGA is

modified or changed with some other logic to introduce

defects in the SUT. In this technique, as there is no other

circuit, so there is no area overhead problem, whereas,

reconfiguration/partial reconfiguration has time (speed)

issue. The second drawback is that these techniques can only

be used with the FPGAs having these reconfiguration

facilities. Mostly new FPGAs can be reconfigured partially

or entirely using some global signals [13]. Few

reconfiguration based FI tools are described in the sequel.

1) Flipper

 The flipper is the tool, use to determine Single Event

Upsets (SEUs) effect in SRAM-based FPGA systems using

FI technique. It was developed with the help of the European

space agency. Flipper injects Single Event Upsets (SEU)

faults in the configuration memory of the target system using

the partial reconfiguration. Flipper consists of two parts, i.e.

hardware platform and software application. The hardware

platform contains a flexible FPGA board for SEU analysis,

and the software parts run on the host computer, which was

developed for the flipper tool for fault injection experiments

[14], [15].

 The flipper is a reconfiguration based fault injection tool

for designs implemented on FPGA. This tool requires two

boards for fault injection analysis. The first one is Xilinx

Virtex 2 Pro motherboard test fixture, which is used for

radiation tests and the second is a piggy-back board (SRAM-

FPGA for implementing Device Under Test (DUT)) [16].

Probabilistic model is involved to determine design

sensitivity instead of testing all configuration bits. Fault

injection process modifies frames and uses active partial

reconfiguration. Flipper can inject single as well as multiple

bit upsets in the DUT.

Fault
List

Result s

Fault List
Manager

Result
Analy s er

Communication Interface

Fault
I njection
Manager

Target System

Host
Computer

Target
Progra m

Bahria University Journal of Information & Communication Technologies Vol. 11, Issue II, December 2018

Page 13 ISSN – 1999-4974

 A graphical user interface is created for performing the

software part of the host PC. The software application can be

used for the following functions, such as the target design for

fault injection, fault type (bit-flip fault model (SEUs)), test

mode and clock rate. Input and output data can be gathered

from the simulation tool (i.e. ModelSim) at each clock edge.

Flipper tool is used to simulate the effect of ion-radiation in

the DUT. Also, it measures the robustness and sensitivity of

the design [14].

2) FT-UNSHADES/-2:

 It stands for Fault Tolerant UNiversity of Sevilla

HArdware DEbugging tolerant System (FT-UNSHADES) is

a software/hardware platform. This tool detects and analyses

the fault tolerance capability of the SUT [17]. New and

updated version of this tool, which uses partial

reconfiguration of Xilinx Virtex technology and has an

improved user interface is called FT-UNSHADES2. This

tool deals with designs written in VHDL.

 FT-UNSHADES hardware framework requires a golden

model (Module Under Test), faulty MUT, comparator, test

shell and input stimuli. In this framework, a fully controlled

test environment is designed. The golden and faulty modules

are implemented on the SRAM-FPGA on the Xilinx Virtex-

II FPGA board. The golden module is protected from the

radiation, whereas, another module is exposed to the

radiations. These radiations produce the SEUs (bit-flip) in the

design. The responses of both SUTs are compared to detect

faults and evaluate reliability and fault tolerance of the design

[18].

B. Instrumentation-based FI Tools

 In the instrumentation-based technique, the additional

circuitry for fault injection analysis is added to the target

system, and it is called ‘saboteur’. Saboteur can be defined

as a component which remains inactive during its normal

operation but once it is activated, introduces faults in the

target system during the fault injection process. Saboteur can

be constructed from a simple gate or some complex circuitry.

The advantage of practising this technique is that it does not

have time constraints. The foremost shortcoming of this

technique is large area-overhead, which is not an issue with

the new FPGAs, as they have a larger capacity to implement

the large designs [13].

 The design and development cycle for the FPGA-based

designs consists of several steps where this instrumentation

technique can be applied, e.g. in net-list generated after the

synthesis process, bit-stream file, and at the HDL design

code. Instrumentation-based fault injection tools are

developed in the last decades are considered for the study in

this paper.

1) NETFI/-2

 NET-list Fault Injection (NETFI) provides an automated

way of fault injection in synthesizable net-list at Register

Transfer Level (RTL) of designs and systems, which are

implemented on the FPGA. This tool can be worked on

designs written in VHDL and Verilog HDLs. NETFI covers

most of the critical memory cells of a design within one clock

cycle for the fault injection analysis. In this method, a large

net-list under test is decomposed into several smaller subnet-

list to avoid the problem of large area overhead. To verify

and validate the tool operation, NETFI is used in estimating

the soft error rate of a DUT during execution of a benchmark

program. NETFI-2 is an extended version of NETFI, which

is faster than the previous version NETFI. Target system is

instantiated on the FPGA and the FI campaign is carried out

using NETFI-2. It minimizes the area overhead. The

controller of the tool is based on MicroBlaze microprocessor,

which provides an efficient and flexible controller. As it is

based on soft-core processor so it is conveniently

programmed in a software [19], [20], [21].

C. MODNET

 In the NETFI, the generated net-list after the synthesis

process is applied as an input to the software tool, named

MODNET (MODify NET-list), developed to automate the

instrumentation process. The output of this tool is a modified

net-list with a large number of additional input signals. These

signals are used to retrieve and inject SEUs and SETs in all

logic designs and memory cells [19],

[20], [21], [2].

Fig. 2 The FPGA development flow showing various points of modification [12]

Bahria University Journal of Information & Communication Technologies Vol. 11, Issue II, December 2018

Page 14 ISSN – 1999-4974

1) FITO

 Fault Injection TOol (FITO) instruments/modifies

Verilog HDL code for FPGA-based designs. FITO supports

fault injection for Verilog HDL at different abstraction

levels, e.g. RTL and gate-level [22].

2) FITO contains the following main parts,

a) Source Code Modifier & FLM:- Verilog file is first input

to this part of the tool which generates fault and time list,

along with the instrumented synthesizable source code.

b) Fault Injection Manager:- FIM is a crucial part and is

implemented on the FPGA. This part performs real-time

fault injection and generates trace data for both fault-free

and faulty systems.

c) Result Analyser:- This part of the tool is also developed

on a host computer, which takes the trace data as input

and performs fault calculations.

 This tool performs fault injection experiments in various

abstraction levels as mentioned before. In gate-level models,

types of faults introduced are permanent and transient faults.

It injects stuck-at faults in the code. The controlling of fault

injection and activation is done by an additional signal Fault

Injection Signal (FIS). For stuck-at 1, an OR gate is used

having one FIS input, whereas, an AND gate is used an

inverted FIS signal for stuck-at 0 fault models

implementations. For the SEU fault model, an XOR gate is

used with a variety of approaches as described in [22].

3) FuSE:

 FuSE stands for Fault injection Using

Simulation/Emulation. SEmulation is performed by

SEmulator® engine, which is a hardware accelerator for HDL

simulations. This tool performs both the simulation and

emulation of the SUT. More detail can be found in [23], [24].

FuSE tool can inject faults in an HDL code during simulation

and also inject faults in the synthesis net-list downloaded into

FPGA.

 One of the core components of this engine is HPE_Desk,

which provides a user-friendly interface for the simulation &

emulation processes. FuSE framework is used as a stand-

alone VHDL-based fault injection tool under the usage of

SEmulator® engine. FuSE considers stuck-at 1/0 fault model

along with bit-flip, bridging or delay faults for single or

multiple signals. The FuSE fault injection tool accelerates the

process of fault simulation/emulation. Different fault models

are used using saboteur injection, and results are observed.

4) Direct Fault Injection:

 Direct Fault Injection (DFI) is an emulation based tool

for FPGA designs. It can be used for both VHDL and Verilog

designs. DFI is a tool used to insert SEU in flip-flops of the

processor design within a single clock cycle. The fault

injection control unit consists of a multiplexer with a finite

state machine to inject and activate faults. Large sensitive

areas in the processor are mostly caches and registers in the

arithmetic logic unit, etc. The disadvantage of using DFI is

that it can be used for processors, for which HDL code must

be available. This tool deals with VHDL code in particular

[19].

In this tool, the consequences of SEUs are emulated into

the memory of processors. Faults are injected by adding

saboteur and implemented on the FPGA with the original

design. ASTERICS (Advanced System for the Test under

Radiation of Integrated Circuits and Systems) is a platform

which consists of previously developed THESIC+Platform

by TIMA labs. The architecture of ASTERICS includes two

FPGAs. The first FPGA is a COM processor (Power PC) and

the second FPGA is called chip-set. The first FPGA handles

the communication between the host computer and this

platform. Also, it includes programmable watchdog timers

which check errors in the DUT. The chip-set FPGA contains

the DUT and the interface between the design and the

platform. This connection is used to verify the operation of

the DFI tool on the benchmark, which consists of the LEON

processor written in VHDL.

5) FIFA

 FIFA stands for Fault Injection and Fault masking

Analysis (FIFA) approach. It is a hardware IP, designed to

estimate the robustness of digital circuits by fault injection

technique. It injects and observes the response of single or

multiple faults. This tool injects faults using the FPGA at the

RTL level [25]. Consider the digital circuit under analysis is

‘OP’. In this platform, two copies of ‘OP’ are considered:

fault-free (OP-REF) and faulty (OP-FAULTY). There are

two steps for analysis of fault. At first, the fault is injected,

and the response is gathered, and later compared with the

output of the OP-REF from the same input provided to both.

If any mismatch is not observed for a particular fault, then it

can be said that the fault is masked and the circuit is robust

to the fault. In this way, the robustness of digital circuits is

evaluated [26].

 In this tool, fault injection mechanism is based on

saboteurs, which consist of a multiplexer with an XOR gate

with error signal which alters the value of the connected

input, whereas error signal is ANDED with two signals for a

select signal of a multiplexer. In general, the bit-flip fault

model is practised in this tool.

6) FIDYCO

 FIDYCO stands for Flexible on-chip fault Injector for

run-time Dependability validation with targetspecific

COmmand language. It is a fault injection tool for FPGA-

based designs. In this tool, there are two main parts that fault

injector and the target system. Both parts are implemented

on the FPGA. Target systems are written in the VHDL

language. This tool is available as an open platform and

flexible platform in which every type of component can be

tested [27].

 FIDYCO consists of DUT and Golden Node (GN), both

implemented on the FPGA. GN is fault-free, whereas, fault

injector unit injects faults in the DUT and responses are

gathered and compared by the result analyser. The fault

injector injects faults in a controlled manner, i.e. location and

duration. The fault injection manager is used to select faults

Bahria University Journal of Information & Communication Technologies Vol. 11, Issue II, December 2018

Page 15 ISSN – 1999-4974

to be inserted in the DUT, hence this unit is a very complex

and intelligent. There are two modes of operation of the tool,

automatic and interactive mode.

7) DBIT

 The primary purpose of DBIT is independent the

process of verification for FPGA-based designs written in

VHDL language [28]. DBIT supports the operation of fault

profiling and performs fault injection at the coding step of

designing. VHDL file is applied as an input to the tool, which

is examined for fault injection. The user selects the fault

model and targets a line of code for modification of the

particular design under test. Next step performs fault

profiling, and then a result analyser collects the results and

produces a report. The location of faults in the VHDL code

of the target system where faults are injected as a mutant.

Some locations are given in the sequel,

• signal/variable names;

• constants;

• operators ;

• assignments;

• conditional statements;

 This tool is developed for the sole purpose of

Independent Verification and Validation (IV & V) of the

FPGA designs. It performs fault profiling, fault injection

procedures, and the result analysis.

IV. RASP-FIT: PROPOSED FAULT INJECTION TOOL

 RASP-FIT stands for “Rechner Architektur und System

Programmierung-Fault Injection Tool”. The first part of its

name is the German name of the department. The RASP-FIT

is based on an instrumentation technique and developed in

Matlab. FPGA-based designs are described in hardware

description languages, mainly Verilog and VHDL. This tool

is specially developed for Verilog designs. These Verilog

designs can be expressed at different abstraction levels, e.g.

gate-level designs, data-flow designs and behavioural level

designs [29], [30].

Fig. 3 GUI of the proposed tabbed-based FI tool (RASP-FIT)

 FISA Unit: The FISA unit is a fault control unit which is

based on demultiplexer logic. The term FISA unit stands for

Fault Injection, Selection and Activation unit. It is designed

for fault injection investigation to examine the injection of

faults as shown in Figure 5. The FIS signal has a logic value

‘1’. The function of the demultiplexer is to route the value of

 RASP-FIT Simulation Environment

Fig. 4 RASP-FIT and simulation environment [11]

 The graphical user interface for the tool is also

developed in Matlab. Figure 3 shows the screen-shot of the

GUI of the tabbed-based tool, where each tab describes some

functionality of the RASP-FIT. One of the significant

advantages of this tool is that it is technology independent;

one can use it on any FPGA from any vendor as it works on

the Verilog code. Secondly, it can test the design at the code

level, and the user can obtain compact test vectors and fault

coverage. Also, it helps to improve fault tolerance capability

and reliability of the FPGA-based design [31],

[11], [32].

 The RASP-FIT tool takes a synthesizable Verilog design

file as an input, and the Verilog code modifier algorithm (aka

Fault Injection Algorithm) modifies the design by

introducing different fault models. These faults remain

inactive until the user activates them by giving signal through

Fault Injection, Selection, and Activation (FISA) unit. The

methodology along with the whole fault injection

environment of RASP-FIT tool is shown in Figure 4.

Fig. 5 Proposed DEMUX fault injection model (FISA Control unit) [31]

The FIS signal to the line numbered by select port pins. The

fault selection input is activated by test-bench, and it is

applied to select and enable all faults sequentially in the SUT.

The number of Fault Selection (FS) input lines are calculated

according to (1),

Fault Injection
Algorithm

Hardness
Analysis

Compaction

Sensitive
Locations

Compacted
Test Vectors

Design File
Verilog Code

(SUT)
Xilinx ISE

+
ModelSim

Golden
Model

Faulty
Copies

Top Design
 File

F 1

FISA Control Unit

F 2

F 3

Fn

F n - 1

Select Port Pins

FIS

Bahria University Journal of Information & Communication Technologies Vol. 11, Issue II, December 2018

Page 16 ISSN – 1999-4974

 FS = [log2(Ncopy)] (1)

 where FS is the number of fault selection port pins and

Ncopy is the number of faults injected per copy, respectively.

The RASP-FIT tool deals with various fault models (for

example, bit-flip, stuck-at 1 & 0) for the FI analysis of SUT.

It introduces faults in every permissible location in the target

system. For these models, XOR, OR and AND gates with

inverter are utilized as shown in the code. The RASP-FIT

tool performs the following functions at this stage of

development,

• Instrumentation of Verilog code (at all abstraction

levels)

• Automatic Test Pattern Generation (ATPG) method

[31], [30]

• Sensitivity analysis under hardness [11]

V. COMPARISON BETWEEN THE PROPOSED AND

STATE-OF-THE-ART TOOLS

 Various and fantastic fault injection tools are presented

in the last couple of decades in the literature. In this study,

FPGA-based fault injection tools are focused on. All tools are

useful and designed for specific purposes. Most of the FI

tools at the code level of design are developed for VHDL

designs, whereas very few fault injection tools are produced

for both, i.e. Verilog and VHDL.

 Some tools provide more substantial area overhead

during the fault injection analysis of the SUT in comparison

of other tools, whereas other devices, might increase the

number of input port pin in an unexpected or unrealistic

count. If the tools require a large number of pins to select and

activate individual fault, then it is not a feasible idea for a

large design with thousands of failures. FPGA-based fault

injection tools come in the category of emulation based

technique. In this paper, more focused is put on the

instrumentation-based FI tools and techniques.

 In this approach, additional circuitry is added to the

original design for fault injection analysis, e.g. fault models

and the fault control unit are required. Most tools need a host

computer (for process data) and target system (implemented

on FPGA). The comparison between the proposed tool and

the tools available in the literature is carried out based on the

different parameters, as given in Table I.

As described earlier, FPGA-based fault injection tools can

be developed in various stages of the development flow. The

controllability and observability parameters for the injection

places in the SUT are decreased as moving further in the

development flow to bit-stream generation. These tools are

mostly producing statistical results. FI tools, developed at the

code level, provide maximum controllability and

observability. Therefore, the RASP-FIT tool is developed for

fault injection at the code level of the FPGA-based designs.

It is also observed that the number of fault models is also

limited when one move to the development cycle. For

example, in the bit-stream file injection, only the SEU model

is used. However, the RASP-FIT tool deals with three fault

models.

VI. CONCLUSION

 Fault injection is an important technique used to test,

fault simulation/emulation applications and evaluate the

design characteristics and dependability parameters, such as

reliability, safety and fault coverage. Fault injection tools are

developed for the testing, verification and validation of the

FPGA-based designs. All the FPGA-based FI tools are

produced in the specific, focused area of interest and the

abstraction level of the development flow. In this paper, the

usefulness of all tools is highlighted and studied. FI tools, at

the code level, have many advantages such as technology

independence, high controllability & observability for fault

injection places, implementation and simulation are carried

out using any simulator engine. No other specialized

hardware is required. The RASP-FIT is proposed and

developed to help design and test engineers to perform fault

injection analysis for the FPGA based HDL designs at the

code level with ease. This tool has been developed

specifically for Verilog designs.

Gate abstraction level // Different

fault models
module faultModels_GL (a ,b, fi_bf , fi_sa1 ,

fi_sa0 , c)
input a ,b, fi_bf , fi_sa1 , fi_sa0

;
output c ; and and_1 (c , fi_bf ^ a ,b) ;

//Bit−f l i p
and and_2 (c , fi_sa1 | a ,b) ;

//Stuck−at 1 and and_3 (c ,~ fi_sa0 &

a ,b) ;
//Stuck−at 0 endmodule

Data−flow abstraction level // Different

fault models
module faultModels_DF (a ,b, fi_bf , fi_sa1 ,

fi_sa0 , c)
input a ,b, fi_bf , fi_sa1 , fi_sa0

;
output c ;

assign c=((fi_bf ^ a) & b) ;
//Bit−f l i p assign c=((fi_sa1 | a) &

b) ;
//Stuck−at 1 assign c=((~fi_sa0 & a)

& b) ;
//Stuck−at 0 endmodule

Behavioural abstraction level // Different

fault models
module faultModels_behave (a , b, fi_bf ,

fi_sa1 , fi_sa0 , c)
input a ,b, fi_bf , fi_sa1 , fi_sa0

;
output c ;

//always block blocking and

non−blocking
c=((fi_bf ^ a) & b) ; //Bit−

f l i p
c<=((fi_sa1 | a) & b) ; // Stuck−at 1

endmodule

Bahria University Journal of Information & Communication Technologies Vol. 11, Issue II, December 2018

Page 17 ISSN – 1999-4974

TABLE I FPGA-BASED FAULT INJECTION TOOLS AND TECHNIQUES

List

No:
Tool Name Category

Fault Models

Used
HDL

Functions

Perform
Remarks

1 Flipper Reconfiguration SEUs -
Robustness

measurement
Fault injection by

heavy ion radiation

2
FT-UNSHADES

&-2
Reconfiguration SEUs VHDL

Reliability

measurement

Fault injection by

heavy ion radiation

3 NETFI, NETFI-2 Instrumentation
SET/SEU,
Stuck at

-both-

Sensitivity

evaluation of soft-

errors

Fault injection
in net-list

4 FITO Instrumentation
Stuck-at,

Bit-flip
Verilog

Observe

responses for
error and failures

Provides good

Controllability,
& Observability

5 FUSE Instrumentation
Saboteur

Injections
VHDL

Speed-up

Simulation/Emulation

Simulator Engine

dependent

6 DFI Instrumentation
SEUs

in registers
VHDL/Verilog

Salient faults, error

timeouts

Platform dependent

ASTERICS

7 FIFA Instrumentation Bit-flip
VHDL/Verilog

(RTL)
Robustness
calculations

Single &
multiple fault analysis

8 FIDYCO Instrumentation
SEUs

in registers
VHDL Fault tolerance assessment

Platform dependent

ASTERICS

9 DBIT Instrumentation

fault in coding

variable, signals,

constant

VHDL independent verification
Verification and

Validation (IV&V)

10 RASP-FIT Instrumentation
SEUs (bit-flip)
Stuck at 1 & 0

Verilog

FIA, Testing, Hardness

analysis

Compaction, Redundancy

Technology independent

Bahria University Journal of Information & Communication Technologies Vol. 11, Issue II, December 2018

Page 18 ISSN – 1999-4974

REFERENCES

[1] L. Entrena, “Fast fault injection techniques using FPGAs,” in

2013 14th Latin American Test Workshop - LATW.

Madrid,Spain: IEEE, Apr 2013, pp. 1–1. [Online]. Available:

http://ieeexplore.ieee.org/document/6562680/

[2] M. Solinas, A. Coelho, J. A. Fraire, N. E. Zergainoh, P. A.

Ferreyra, and R. Velazco, “Preliminary results of NETFI2: An

automatic method for fault injection on HDL-based designs,”

in 2017 18th IEEE Latin American Test Symposium (LATS).

IEEE, Mar 2017, pp. 1–4. [Online]. Available:

http://ieeexplore.ieee.org/document/7906748/

[3] A. Benso, M. Rebaudengo, M. Reorda, and P. Civera, “An

integrated HW and SW fault injection environment for real-

time systems,” in Proceedings 1998 IEEE International

Symposium on Defect and Fault Tolerance in VLSI Systems

(Cat. No.98EX223). Austin, TX, USA, USA: IEEE Comput.

Soc, 1998, pp. 117–122. [Online]. Available: http://ieeexplore.

ieee.org/document/732158/

[4] M. Kooli, F. Kaddachi, G. D. Natale, A. Bosio, P. Benoit, and

L. Torres, “Computing reliability: On the differences between

software testing and software fault injection techniques,”

Microprocessors and Microsystems, vol. 50, pp. 102–112,

May 2017. [Online]. Available:

https://linkinghub.elsevier.com/

retrieve/pii/S0141933116302575

[5] G. dos Santos, E. Marques, L. d. B. Naviner, and J.-F. Naviner,

“Using error tolerance of target application for efficient

reliability improvement of digital circuits,” Microelectronics

Reliability, vol. 50, no. 9-11, pp. 1219–1222, Sep 2010.

[Online]. Available: https://linkinghub.elsevier.com/retrieve/

pii/S0026271410004208

[6] J. T. Flaquer, J. Daveau, L. Naviner and P. Roche,

“Fast reliability analysis of combinatorial logic circuits using

conditional probabilities,” Microelectronics Reliability, vol.

50, no. 9-11, pp. 1215–1218, Sep 2010. [Online]. Available:

http:

//linkinghub.elsevier.com/retrieve/pii/S0026271410003318

[7] F. Kastensmidt, L. Carro, and R. Reis, Fault-Tolerance

 Techniques for SRAM-based FPGAs. Boston, MA: Springer

US, 2006, vol. 32. [Online]. Available:

http://link.springer.com/ 10.1007/978-0-387-31069-5

[8] P. Civera, L. Macchiarulo, M. Rebaudengo, M. Sonza Reorda,

and M. Violante, “Exploiting FPGA-based techniques for fault

injection campaigns on VLSI circuits,” in Proceedings 2001

IEEE International Symposium on Defect and Fault Tolerance

in VLSI Systems. San Francisco, CA, USA, USA: IEEE

Comput. Soc, 2001, pp. 250–258. [Online]. Available:

http://ieeexplore.ieee.org/document/966777/

[9] P. Civera, L. Macchiarulo, M. Rebaudengo, M. S. Reorda, and

M. Violante, “An FPGA-based approach for speeding-up fault

injection campaigns on safety-critical circuits,” Journal of

Electronic Testing: Theory and Applications (JETTA), vol. 18,

no. 3, pp. 261–271, 2002.

[10] M. Reorda, L. Sterpone, M. Violante, M. Portela-Garcia, C.

Lopez-Ongil, and L. Entrena, “Fault Injection-based

Reliability Evaluation of SoPCs,” in Eleventh IEEE European

Test Symposium (ETS’06), vol. 2006. Southampton, UK:

IEEE, 2006, pp. 75–82. [Online]. Available: http://ieeexplore.

ieee.org/document/1628157/

[11] A. R. Khatri, A. Hayek, and J. Borcsok, Applied

Reconfigurable

Computing, ser. Lecture Notes in Computer Science, V.

Bonato, C. Bouganis, and M. Gorgon, Eds. Cham: Springer

International Publishing, 2016, vol. 9625. [Online]. Available:

http://link.springer.com/10.1007/978-3-319-30481-6

[12] P. Graham, B. Nelson, and B. Hutchings, “Instrumenting

Bitstreams for Debugging FPGA Circuits,” in Proceedings of

the 9th Annual IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM’01), Rohnert Park, CA,

USA, 2001, pp. 41 – 50. [Online]. Available: https:

//ieeexplore.ieee.org/document/1420900/

[13] F. Serrano, J. A. Clemente, and H. Mecha, “A Methodology to

Emulate Single Event Upsets in Flip-Flops Using FPGAs

through Partial Reconfiguration and Instrumentation,” IEEE

Transactions on Nuclear Science, vol. 62, no. 4, pp. 1617–

1624, Aug 2015. [Online]. Available:

http://ieeexplore.ieee.org/ document/7181741/

[14] M. Alderighi, F. Casini, S. D’Angelo, M. Mancini, D.

M. Codinachs, S. Pastore, C. Poivey, G. R. Sechi, G. Sorrenti,

and R. Weigand, “Experimental Validation of Fault Injection

Analyses by the FLIPPER Tool,” IEEE Transactions on

Nuclear Science, vol. 57, no. 4, pp. 2129–2134, Aug 2010.

[Online]. Available:

http://ieeexplore.ieee.org/document/5550298/

[15] M. Alderighi, F. Casini, S. D’Angelo, S. Pastore, G. Sechi, and

R. Weigand, “Evaluation of Single Event Upset Mitigation

Schemes for SRAM based FPGAs using the FLIPPER Fault

Injection Platform,” in 22nd IEEE International Symposium

on Defect and Fault-Tolerance in VLSI Systems (DFT 2007).

Rome, Italy: IEEE, Sep 2007, pp. 105–113. [Online].

Available: http://ieeexplore.ieee.org/document/4358378/

[16] F. Kastensmidt and P. Rech, FPGAs and Parallel Architectures

for Aerospace Applications, F. Kastensmidt and P. Rech, Eds.

Cham: Springer International Publishing, 2016. [Online].

Available: http://link.springer.com/10.1007/978-3-319-

14352-1

[17] J. Nápoles, H. Guzmán, M. Aguirre, J. N. Tombs, F. Muñoz,

V. Baena, A. Torralba, and L. G. Franquelo, “Radiation

Environment Emulation for VLSI Designs: A Low Cost

Platform based on Xilinx FPGA’s,” in 2007 IEEE

International Symposium on Industrial Electronics. Vigo,

Spain: IEEE, 2007, pp. C1–C1. [Online]. Available:

http://ieeexplore.ieee. org/document/4374556/

[18] S. Cuenca-Asensi, A. Martinez-Alvarez, F. Restrepo-Calle, F.

R. Palomo, H. Guzman-Miranda, and M. A. Aguirre, “A Novel

Co-Design Approach for Soft Errors Mitigation in Embedded

Systems,” IEEE Transactions on Nuclear Science, vol. 58, no.

3, pp. 1059–1065, Jun 2011. [Online]. Available:

http://ieeexplore.ieee.org/document/5746555/

[19] W. Mansour and R. Velazco, “SEU Fault-Injection in

VHDLBased Processors: A Case Study,” Journal of Electronic

Testing, vol. 29, no. 1, pp. 87–94, Feb 2013. [Online].

Available: http://link.springer.com/10.1007/s10836-013-

5351-6

[20] ——, “An Automated SEU Fault-Injection Method and Tool

for HDL-Based Designs,” IEEE Transactions on Nuclear

Science, vol. 60, no. 4, pp. 2728–2733, Aug 2013. [Online].

Available: http://ieeexplore.ieee.org/document/6555963/

[21] W. Mansour, M. A. Aguirre, H. Guzman-Miranda, J.

Barrientos, and R. Velazco, “Two complementary approaches

for studying the effects of SEUs on HDL-based designs,” in

2014 IEEE 20th International On-Line Testing Symposium

(IOLTS). IEEE, Jul 2014, pp. 220–221. [Online]. Available:

http://ieeexplore.ieee.org/document/6873702/

[22] M. Shokrolah-Shirazi and S. G. Miremadi, “FPGA-Based

Fault Injection into Synthesizable Verilog HDL Models,” in

2008 Second International Conference on Secure System

Integration and Reliability Improvement. Yokohama: IEEE,

Jul 2008, pp. 143–149. [Online]. Available:

http://ieeexplore.ieee.org/ document/4579806/

http://ieeexplore.ieee.org/document/6562680/
http://ieeexplore.ieee.org/document/7906748/
http://ieeexplore.ieee.org/document/732158/
http://ieeexplore.ieee.org/document/732158/
http://ieeexplore.ieee.org/document/732158/
https://linkinghub.elsevier.com/retrieve/pii/S0141933116302575
https://linkinghub.elsevier.com/retrieve/pii/S0141933116302575
https://linkinghub.elsevier.com/retrieve/pii/S0141933116302575
https://linkinghub.elsevier.com/retrieve/pii/S0026271410004208
https://linkinghub.elsevier.com/retrieve/pii/S0026271410004208
https://linkinghub.elsevier.com/retrieve/pii/S0026271410004208
http://linkinghub.elsevier.com/retrieve/pii/S0026271410003318
http://linkinghub.elsevier.com/retrieve/pii/S0026271410003318
http://linkinghub.elsevier.com/retrieve/pii/S0026271410003318
http://link.springer.com/10.1007/978-0-387-31069-5
http://link.springer.com/10.1007/978-0-387-31069-5
http://ieeexplore.ieee.org/document/966777/
http://ieeexplore.ieee.org/document/1628157/
http://ieeexplore.ieee.org/document/1628157/
http://ieeexplore.ieee.org/document/1628157/
http://link.springer.com/10.1007/978-3-319-30481-6
https://ieeexplore.ieee.org/document/1420900/
https://ieeexplore.ieee.org/document/1420900/
http://ieeexplore.ieee.org/document/7181741/
http://ieeexplore.ieee.org/document/7181741/
http://ieeexplore.ieee.org/document/5550298/
http://ieeexplore.ieee.org/document/4358378/
http://link.springer.com/10.1007/978-3-319-14352-1
http://link.springer.com/10.1007/978-3-319-14352-1
http://ieeexplore.ieee.org/document/4374556/
http://ieeexplore.ieee.org/document/4374556/
http://ieeexplore.ieee.org/document/5746555/
http://link.springer.com/10.1007/s10836-013-5351-6
http://link.springer.com/10.1007/s10836-013-5351-6
http://ieeexplore.ieee.org/document/6555963/
http://ieeexplore.ieee.org/document/6873702/
http://ieeexplore.ieee.org/document/4579806/
http://ieeexplore.ieee.org/document/4579806/

Bahria University Journal of Information & Communication Technologies Vol. 11, Issue II, December 2018

Page 19 ISSN – 1999-4974

[23] M. Jeitler and J. Lech, “Speeding up Fault Injection for

Asynchronous Logic by FPGA-Based Emulation,” in 2009

International Conference on Reconfigurable Computing and

FPGAs. Quintana Roo: IEEE, Dec 2009, pp. 65–70. [Online].

Available: http://ieeexplore.ieee.org/document/5382029/

[24] M. Jeitler, M. Delvai, and S. Reichor, “FuSE - a hardware

accelerated HDL fault injection tool,” in 2009 5th Southern

Conference on Programmable Logic (SPL). Sao Carlos: IEEE,

Apr 2009, pp. 89–94. [Online]. Available:

http://ieeexplore.ieee. org/document/4914906/

[25] D. de Andres, J. Ruiz, D. Gil, and P. Gil, “Fault Emulation for

Dependability Evaluation of VLSI Systems,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 16, no. 4, pp. 422–431, Apr 2008. [Online]. Available:

http://ieeexplore.ieee.org/document/4469913/

[26] L. Naviner, J.-F. Naviner, G. dos Santos, E. Marques, and N.

Paiva, “FIFA: A fault-injection–fault-analysis-based tool for

reliability assessment at RTL level,” Microelectronics

Reliability, vol. 51, no. 9-11, pp. 1459–1463, Sep 2011.

[Online]. Available: https://linkinghub.elsevier.com/retrieve/

pii/S0026271411002162

[27] B. Rahbaran, A. Steininger, and T. Handl, “Built-in Fault

Injection in Hardware - The FIDYCO Example,” in Second

IEEE International Workshop on Electronic Design, Test and

Applications. Perth, WA, Australia: IEEE, 2004, pp. 327– 327.

[Online]. Available: http://ieeexplore.ieee.org/document/

1409860/

[28] L. Reva, V. Kulanov, and V. Kharchenko, “Design fault

injection-based technique and tool for FPGA projects

verification,” in 2011 9th East-West Design & Test

Symposium (EWDTS). Sevastopol: IEEE, Sep 2011, pp. 191–

195. [Online]. Available:

http://ieeexplore.ieee.org/document/6116608/

[29] A. R. Khatri, A. Hayek, and J. Borcsok, “RASP-FIT: A Fast

and Automatic Fault Injection Tool for Code-Modification of

FPGA Designs,” International Journal of Advanced Computer

Science and Applications, vol. 9, no. 10, pp. 30–40, 2018.

[Online]. Available:

http://thesai.org/Publications/ViewPaper?

Volume=9&Issue=10&Code=ijacsa&SerialNo=4

[30] A. R. Khatri, A. Hayek, and J. Börscök, “Validation of the

Proposed Fault Injection, Test and Hardness Analysis for

Combinational Data-Flow Verilog HDL Designs Under the

RASP-FIT Tool,” in 2018 IEEE 16th Intl Conf on Dependable,

Autonomic and Secure Computing, 16th Intl Conf on

Pervasive Intelligence and Computing, 4th Intl Conf on Big

Data

Intelligence and Computing and Cyber Science and

Technology

Congress(DASC/PiCom/DataCom/CyberSciTech). Athens,

Greece: IEEE, Aug 2018, pp. 544–551. [Online]. Available:

https://ieeexplore.ieee.org/document/8511946/

[31] A. R. Khatri, A. Hayek, and J. Borcsok, “ATPG method with

a hybrid compaction technique for combinational digital

systems,” in 2016 SAI Computing Conference (SAI). London,

UK: IEEE, Jul 2016, pp. 924–930. [Online]. Available: http:

//ieeexplore.ieee.org/document/7556091/

[32] A. R. Khatri, A. Hayek, and J. Börcsök, “Validation of the

Proposed Hardness Analysis Technique for FPGA Designs to

Improve Reliability and Fault-Tolerance,” International

Journal of Advanced Computer Science and Applications, vol.

9, no. 12, pp. 1–8, 2018. [Online]. Available: http:

//dx.doi.org/10.14569/IJACSA.2018.091201

http://ieeexplore.ieee.org/document/5382029/
http://ieeexplore.ieee.org/document/4914906/
http://ieeexplore.ieee.org/document/4914906/
http://ieeexplore.ieee.org/document/4469913/
https://linkinghub.elsevier.com/retrieve/pii/S0026271411002162
https://linkinghub.elsevier.com/retrieve/pii/S0026271411002162
https://linkinghub.elsevier.com/retrieve/pii/S0026271411002162
http://ieeexplore.ieee.org/document/1409860/
http://ieeexplore.ieee.org/document/1409860/
http://ieeexplore.ieee.org/document/1409860/
http://ieeexplore.ieee.org/document/6116608/
http://thesai.org/Publications/ViewPaper?Volume=9&Issue=10&Code=ijacsa&SerialNo=4
http://thesai.org/Publications/ViewPaper?Volume=9&Issue=10&Code=ijacsa&SerialNo=4
http://thesai.org/Publications/ViewPaper?Volume=9&Issue=10&Code=ijacsa&SerialNo=4
https://ieeexplore.ieee.org/document/8511946/
http://ieeexplore.ieee.org/document/7556091/
http://ieeexplore.ieee.org/document/7556091/
http://ieeexplore.ieee.org/document/7556091/
http://dx.doi.org/10.14569/IJACSA.2018.091201
http://dx.doi.org/10.14569/IJACSA.2018.091201
http://dx.doi.org/10.14569/IJACSA.2018.091201

