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 Abstract – Fault injection technique is the most popular 

technique for characterising the dependability parameter of 

Very Large Scale Integrated (VLSI) systems and designs. Due 

to technology scaling, Field Programmable Gate Array (FPGA) 

systems are also prone to error and failure; hence fault injection 

tools play a vital role to test and evaluate dependability 

parameters. These tools are categorised into two techniques; 

reconfiguration and instrumentation-based techniques for 

FPGA fault injection tools. The primary focus is put on 

instrumentation-based fault injection tools and techniques in 

this paper. In the instrumentation technique, a specific circuit is 

appended to the original design to carry out fault injection 

analysis. This paper presents the comparison between various 

fault injection tools based on methodology, fault models 

consideration, fault injection control unit and functions they 

perform. 
 Index Terms – Dependability analysis, Instrumentation, 

Fault injection, FPGA, Reliability, Fault tolerance. 

 

I. INTRODUCTION 

 

 FAULT Injection (FI) is one of the most well-known 

techniques which is used in the evaluation of faults and to 

check the capability of design in tolerating failures. The fault 

injection technique performs different functions such as 

detection of sensitive areas of design, validation of the design 

for evaluating reliability, forecasting the output in the 

presence of a fault. Broadly, fault injection techniques can be 

arranged into four groups, i.e. hardware, software, 

simulation, and emulation-based techniques. Fault injection 

tools involving Field Programmable Gate Array (FPGA) are 

classified into two types, i.e. the simulation-based and 

emulation-based fault injection tools 

[1]. 

 Nowadays, FPGA-based designs are widely used in 

various safety-critical systems and space applications. The 

SRAM-based FPGA designs cover nearly 60% of the 

application because of multiple advantages it offers. To 

increase the capacity, the size of components is reduced 

continuously, making the SRAM-based FPGA devices and 

applications faster, as well as; they become prone to errors 

and failures. Therefore, FPGA-based devices must be tested 

and checked for the dependability analysis. In this case, 

FPGA-based fault injection techniques and tools play a vital 

role to verify and validate the System Under Test (SUT). In 

general, the simulation-based method allows greater 

flexibility (i.e. observability and controllability) whereas, the 

emulation technique provides the execution of experiments 

in real time on FPGA platforms [2]. There are numerous 

different causes for requiring FPGA in FI techniques, for 

example, for simulation, designs models are available. Also, 

for emulation on the FPGA platform, fast emulation can be 

achieved. By the use of full & partial reconfiguration 

techniques, area overhead issues are resolved. Therefore, 

FPGA-based FI tools are classified into two classes, i.e. 

instrumentation-based and reconfiguration-based fault 

injection tools due to advantages of the FPGA mentioned 

above (i.e. more area capacity and  reconfiguration 

technique), respectively. 

 In the development of FI tools, a significant problem is 

the definition of a FI mechanism also known as FI control 

unit. This unit is designed by keeping some parameters in 

mind, such as area overhead, the speed of injection (i.e. time 

cost), selection and injection of particular faults [3]. This unit 

consists of simple or complicated circuitry. 

 The system reliability is one of the major concern in 

today’s electronic applications. It is the most important 

characteristic, which measures the quality of systems [4]. 

Fault injection techniques can also evaluate the reliability of 

the SUT. The term reliability is described as “It is a 

probability, which shows the correct functioning of the 

design even in the presence of faults” [5], [6]. Reliability is 

the measure of how good a system is and how often it goes 

down [7]. There are specific techniques which are used more 

widely for the improvement of reliability such as, triple 

modular redundancy, hardened memory cell level, multiple 

redundancies with voting, and error detection and correction 

coding. 

 In this paper, two categories of FPGA-based fault 

injection tools are described along with the FI environment 

of general tools and tools for the FPGA. Modern FPGAs are 

enriched with the capacity and fast (full & partial) 

reconfiguration capabilities. Therefore, various FI 

techniques and tools are studied and compared according to 

the types of the method employed, fault model used, and 

functions they performed for FPGA-based designs. The 

proposed RASP-FIT tool (detail in Section IV) is an 

instrumentation-based FI tool and compared with the tools 

available. 

 This paper is structured as follows: Section II explains 

the general environment of FI tools. The environment 

specifically for FPGA-based FI tools are presented in Section 

III, and it also includes the various FI tools in detail. Section 

IV describes the proposed fault injection tool. The 

comparison between the tools is presented tabularly in 

Section V. In the end, the conclusion of the paper is described 

in Section VI. 
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II. GENERAL FAULT INJECTION SYSTEM 

ENVIRONMENT 

 

 Fault injection techniques can be applied to both 

hardware and software systems to measure fault-tolerance 

and robustness. The environment for hardware and software 

systems is different. In a hardware system, faults can be 

injected on a pin level or an internal level of chips; also faults 

can be inserted into the simulation of the system prototype. 

For software, faults are injected into the software program 

during compile time or run-time in the instructions in Central 

Processing Unit (CPU) registers to networks. Therefore, the 

fault injection environment is designed according to the 

system characterization. A minimal general fault injection 

system is composed of three fundamental modules [8], [9], 

[10], as shown in Figure 1. 

1) Fault List Manager (FLM) 

2) Fault Injection Manager (FIM) 

3) Result Analyser (RA) 

 

A. Fault List Manager (FLM) 

 The FLM is the basic block in the fault injection 

environment of any tool, which is responsible for the 

generation of the Fault-List and Fault-Type injected into the 

various part of the SUT. Fault locations are assumed to be 

equally probable for designs. This module generates faults at 

all possible locations in the target system. Furthermore, it 

sends information to the next critical module FIM. 

 

B.  Fault Injection Manager (FIM) 

 The most critical module in the FI environment is the 

fault injection manager. The complexity of this module is 

proportional to the size of the target system. Functions of this 

module are selecting a particular fault, activating the fault 

and observing its resulting behaviour on the target system 

[8]. 

 

C.   Result Analyser 

 This module can be designed to perform various 

functions. The primary features of the module are collecting 

and analysing the results/responses from the whole 

experiment and producing the statistical reports accordingly. 

For example, in fault injection testing approach, static 

compaction technique is part of this module, which generates 

compact test vectors, Fault Coverage (FC) and so on. 

 

III. ENVIRONMENT OF FAULT INJECTION TOOL 

FOR FPGAS 

 

 FPGA-based fault injection tools have benefits of both 

physical and simulation-based method, such as speed and 

flexibility. The design & development flow for FPGA 

systems consist of many steps, where design modification is 

possible for the fault injection analysis. The significant points 

of modification are in the design’s code, gate-level net-list, 

place & route file and the bit-stream file [11]. Figure 2 shows 

the various points of modification of the FPGA designs [11]. 

These tools are classified into two techniques, i.e. 

reconfiguration-based and instrumentation-based FI tools. 

Many state-of-the-art FI tools have been proposed and 

presented in the literature for FPGA-based designs, which 

insert faults at different stages of development flow for 

assessing design characteristics for FPGA-based designs. 

 

 
Fig. 1 General fault injection environment for FI tools [3] 

 

A. Reconfiguration-based FI Tools 

 Reconfiguration or partial reconfiguration is the 

technique in which configuration memory of FPGA is 

modified or changed with some other logic to introduce 

defects in the SUT. In this technique, as there is no other 

circuit, so there is no area overhead problem, whereas, 

reconfiguration/partial reconfiguration has time (speed) 

issue. The second drawback is that these techniques can only 

be used with the FPGAs having these reconfiguration 

facilities. Mostly new FPGAs can be reconfigured partially 

or entirely using some global signals [13]. Few 

reconfiguration based FI tools are described in the sequel. 

 

1)  Flipper 

 The flipper is the tool, use to determine Single Event 

Upsets (SEUs) effect in SRAM-based FPGA systems using 

FI technique. It was developed with the help of the European 

space agency. Flipper injects Single Event Upsets (SEU) 

faults in the configuration memory of the target system using 

the partial reconfiguration. Flipper consists of two parts, i.e. 

hardware platform and software application. The hardware 

platform contains a flexible FPGA board for SEU analysis, 

and the software parts run on the host computer, which was 

developed for the flipper tool for fault injection experiments 

[14], [15]. 

 The flipper is a reconfiguration based fault injection tool 

for designs implemented on FPGA. This tool requires two 

boards for fault injection analysis. The first one is Xilinx 

Virtex 2 Pro motherboard test fixture, which is used for 

radiation tests and the second is a piggy-back board (SRAM-

FPGA for implementing Device Under Test (DUT)) [16]. 

Probabilistic model is involved to determine design 

sensitivity instead of testing all configuration bits. Fault 

injection process modifies frames and uses active partial 

reconfiguration. Flipper can inject single as well as multiple 

bit upsets in the DUT. 
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 A graphical user interface is created for performing the 

software part of the host PC. The software application can be 

used for the following functions, such as the target design for 

fault injection, fault type (bit-flip fault model (SEUs)), test 

mode and clock rate. Input and output data can be gathered 

from the simulation tool (i.e. ModelSim) at each clock edge. 

Flipper tool is used to simulate the effect of ion-radiation in 

the DUT. Also, it measures the robustness and sensitivity of 

the design [14]. 

 

2) FT-UNSHADES/-2: 

 It stands for Fault Tolerant UNiversity of Sevilla 

HArdware DEbugging tolerant System (FT-UNSHADES) is 

a software/hardware platform. This tool detects and analyses 

the fault tolerance capability of the SUT [17]. New and 

updated version of this tool, which uses partial 

reconfiguration of Xilinx Virtex technology and has an 

improved user interface is called FT-UNSHADES2. This 

tool deals with designs written in VHDL. 

 FT-UNSHADES hardware framework requires a golden 

model (Module Under Test), faulty MUT, comparator, test 

shell and input stimuli. In this framework, a fully controlled 

test environment is designed. The golden and faulty modules 

are implemented on the SRAM-FPGA on the Xilinx Virtex-

II FPGA board. The golden module is protected from the 

radiation, whereas, another module is exposed to the 

radiations. These radiations produce the SEUs (bit-flip) in the 

design. The responses of both SUTs are compared to detect 

faults and evaluate reliability and fault tolerance of the design 

[18]. 

 

B. Instrumentation-based FI Tools 

 In the instrumentation-based technique, the additional 

circuitry for fault injection analysis is added to the target 

system, and it is called ‘saboteur’. Saboteur can be defined 

as a component which remains inactive during its normal 

operation but once it is activated, introduces faults in the 

target system during the fault injection process. Saboteur can 

be constructed from a simple gate or some complex circuitry. 

The advantage of practising this technique is that it does not 

have time constraints. The foremost shortcoming of this 

technique is large area-overhead, which is not an issue with 

the new FPGAs, as they have a larger capacity to implement 

the large designs [13]. 

 The design and development cycle for the FPGA-based 

designs consists of several steps where this instrumentation 

technique can be applied, e.g. in net-list generated after the 

synthesis process, bit-stream file, and at the HDL design 

code. Instrumentation-based fault injection tools are 

developed in the last decades are considered for the study in 

this paper. 

 

1) NETFI/-2  

 NET-list Fault Injection (NETFI) provides an automated 

way of fault injection in synthesizable net-list at Register 

Transfer Level (RTL) of designs and systems, which are 

implemented on the FPGA. This tool can be worked on 

designs written in VHDL and Verilog HDLs. NETFI covers 

most of the critical memory cells of a design within one clock 

cycle for the fault injection analysis. In this method, a large 

net-list under test is decomposed into several smaller subnet-

list to avoid the problem of large area overhead. To verify 

and validate the tool operation, NETFI is used in estimating 

the soft error rate of a DUT during execution of a benchmark 

program. NETFI-2 is an extended version of NETFI, which 

is faster than the previous version NETFI. Target system is 

instantiated on the FPGA and the FI campaign is carried out 

using NETFI-2. It minimizes the area overhead. The 

controller of the tool is based on MicroBlaze microprocessor, 

which provides an efficient and flexible controller. As it is 

based on soft-core processor so it is conveniently 

programmed in a software [19], [20], [21]. 

 

C. MODNET 

 In the NETFI, the generated net-list after the synthesis 

process is applied as an input to the software tool, named 

MODNET (MODify NET-list), developed to automate the 

instrumentation process. The output of this tool is a modified 

net-list with a large number of additional input signals. These 

signals are used to retrieve and inject SEUs and SETs in all 

logic designs and memory cells [19], 

[20], [21], [2]. 

 

 

 
Fig. 2 The FPGA development flow showing various points of modification [12] 
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1) FITO 

 Fault Injection TOol (FITO) instruments/modifies 

Verilog HDL code for FPGA-based designs. FITO supports 

fault injection for Verilog HDL at different abstraction 

levels, e.g. RTL and gate-level [22]. 

 

2) FITO contains the following main parts, 

 

a) Source Code Modifier & FLM:- Verilog file is first input 

to this part of the tool which generates fault and time list, 

along with the instrumented synthesizable source code. 

b) Fault Injection Manager:- FIM is a crucial part and is 

implemented on the FPGA. This part performs real-time 

fault injection and generates trace data for both fault-free 

and faulty systems. 

c) Result Analyser:- This part of the tool is also developed 

on a host computer, which takes the trace data as input 

and performs fault calculations. 

 

 This tool performs fault injection experiments in various 

abstraction levels as mentioned before. In gate-level models, 

types of faults introduced are permanent and transient faults. 

It injects stuck-at faults in the code. The controlling of fault 

injection and activation is done by an additional signal Fault 

Injection Signal (FIS). For stuck-at 1, an OR gate is used 

having one FIS input, whereas, an AND gate is used an 

inverted FIS signal for stuck-at 0 fault models 

implementations. For the SEU fault model, an XOR gate is 

used with a variety of approaches as described in [22]. 

 

3) FuSE:  

 FuSE stands for Fault injection Using 

Simulation/Emulation. SEmulation is performed by 

SEmulator® engine, which is a hardware accelerator for HDL 

simulations. This tool performs both the simulation and 

emulation of the SUT. More detail can be found in [23], [24]. 

FuSE tool can inject faults in an HDL code during simulation 

and also inject faults in the synthesis net-list downloaded into 

FPGA. 

 One of the core components of this engine is HPE_Desk, 

which provides a user-friendly interface for the simulation & 

emulation processes. FuSE framework is used as a stand-

alone VHDL-based fault injection tool under the usage of 

SEmulator® engine. FuSE considers stuck-at 1/0 fault model 

along with bit-flip, bridging or delay faults for single or 

multiple signals. The FuSE fault injection tool accelerates the 

process of fault simulation/emulation. Different fault models 

are used using saboteur injection, and results are observed. 

 

4) Direct Fault Injection:  

 Direct Fault Injection (DFI) is an emulation based tool 

for FPGA designs. It can be used for both VHDL and Verilog 

designs. DFI is a tool used to insert SEU in flip-flops of the 

processor design within a single clock cycle. The fault 

injection control unit consists of a multiplexer with a finite 

state machine to inject and activate faults. Large sensitive 

areas in the processor are mostly caches and registers in the 

arithmetic logic unit, etc. The disadvantage of using DFI is 

that it can be used for processors, for which HDL code must 

be available. This tool deals with VHDL code in particular 

[19]. 

In this tool, the consequences of SEUs are emulated into 

the memory of processors. Faults are injected by adding 

saboteur and implemented on the FPGA with the original 

design. ASTERICS (Advanced System for the Test under 

Radiation of Integrated Circuits and Systems) is a platform 

which consists of previously developed THESIC+Platform 

by TIMA labs. The architecture of ASTERICS includes two 

FPGAs. The first FPGA is a COM processor (Power PC) and 

the second FPGA is called chip-set. The first FPGA handles 

the communication between the host computer and this 

platform. Also, it includes programmable watchdog timers 

which check errors in the DUT. The chip-set FPGA contains 

the DUT and the interface between the design and the 

platform. This connection is used to verify the operation of 

the DFI tool on the benchmark, which consists of the LEON 

processor written in VHDL. 

 

5) FIFA 

 FIFA stands for Fault Injection and Fault masking 

Analysis (FIFA) approach. It is a hardware IP, designed to 

estimate the robustness of digital circuits by fault injection 

technique. It injects and observes the response of single or 

multiple faults. This tool injects faults using the FPGA at the 

RTL level [25]. Consider the digital circuit under analysis is 

‘OP’. In this platform, two copies of ‘OP’ are considered: 

fault-free (OP-REF) and faulty (OP-FAULTY). There are 

two steps for analysis of fault. At first, the fault is injected, 

and the response is gathered, and later compared with the 

output of the OP-REF from the same input provided to both. 

If any mismatch is not observed for a particular fault, then it 

can be said that the fault is masked and the circuit is robust 

to the fault. In this way, the robustness of digital circuits is 

evaluated [26]. 

 In this tool, fault injection mechanism is based on 

saboteurs, which consist of a multiplexer with an XOR gate 

with error signal which alters the value of the connected 

input, whereas error signal is ANDED with two signals for a 

select signal of a multiplexer. In general, the bit-flip fault 

model is practised in this tool. 

 

6) FIDYCO 

 FIDYCO stands for Flexible on-chip fault Injector for 

run-time Dependability validation with targetspecific 

COmmand language. It is a fault injection tool for FPGA-

based designs. In this tool, there are two main parts that fault 

injector and the target system. Both parts are implemented 

on the FPGA. Target systems are written in the VHDL 

language. This tool is available as an open platform and 

flexible platform in which every type of component can be 

tested [27]. 

 FIDYCO consists of DUT and Golden Node (GN), both 

implemented on the FPGA. GN is fault-free, whereas, fault 

injector unit injects faults in the DUT and responses are 

gathered and compared by the result analyser. The fault 

injector injects faults in a controlled manner, i.e. location and 

duration. The fault injection manager is used to select faults 



Bahria University Journal of Information & Communication Technologies Vol. 11, Issue II, December 2018 

Page 15  ISSN – 1999-4974 

to be inserted in the DUT, hence this unit is a very complex 

and intelligent. There are two modes of operation of the tool, 

automatic and interactive mode. 

7) DBIT 

 The primary purpose of DBIT is independent the 

process of verification for FPGA-based designs written in 

VHDL language [28]. DBIT supports the operation of fault 

profiling and performs fault injection at the coding step of 

designing. VHDL file is applied as an input to the tool, which 

is examined for fault injection. The user selects the fault 

model and targets a line of code for modification of the 

particular design under test. Next step performs fault 

profiling, and then a result analyser collects the results and 

produces a report. The location of faults in the VHDL code 

of the target system where faults are injected as a mutant. 

Some locations are given in the sequel, 

• signal/variable names; 

• constants; 

• operators ; 

• assignments; 

• conditional statements; 

 

 This tool is developed for the sole purpose of 

Independent Verification and Validation (IV & V) of the 

FPGA designs. It performs fault profiling, fault injection 

procedures, and the result analysis. 

 

IV. RASP-FIT: PROPOSED FAULT INJECTION TOOL 

 

 RASP-FIT stands for “Rechner Architektur und System 

Programmierung-Fault Injection Tool”. The first part of its 

name is the German name of the department. The RASP-FIT 

is based on an instrumentation technique and developed in 

Matlab. FPGA-based designs are described in hardware 

description languages, mainly Verilog and VHDL. This tool 

is specially developed for Verilog designs. These Verilog 

designs can be expressed at different abstraction levels, e.g. 

gate-level designs, data-flow designs and behavioural level 

designs [29], [30]. 

 
 

Fig. 3 GUI of the proposed tabbed-based FI tool (RASP-FIT) 
        

 FISA Unit: The FISA unit is a fault control unit which is 

based on demultiplexer logic. The term FISA unit stands for 

Fault Injection, Selection and Activation unit. It is designed 

for fault injection investigation to examine the injection of 

faults as shown in Figure 5. The FIS signal has a logic value 

‘1’. The function of the demultiplexer is to route the value of         

     RASP-FIT                      Simulation Environment 

 
 

Fig. 4  RASP-FIT and simulation environment [11] 

 

 The graphical user interface for the tool is also 

developed in Matlab. Figure 3 shows the screen-shot of the 

GUI of the tabbed-based tool, where each tab describes some 

functionality of the RASP-FIT. One of the significant 

advantages of this tool is that it is technology independent; 

one can use it on any FPGA from any vendor as it works on 

the Verilog code. Secondly, it can test the design at the code 

level, and the user can obtain compact test vectors and fault 

coverage. Also, it helps to improve fault tolerance capability 

and reliability of the FPGA-based design [31], 

[11], [32]. 

 The RASP-FIT tool takes a synthesizable Verilog design 

file as an input, and the Verilog code modifier algorithm (aka 

Fault Injection Algorithm) modifies the design by 

introducing different fault models. These faults remain 

inactive until the user activates them by giving signal through 

Fault Injection, Selection, and Activation (FISA) unit. The 

methodology along with the whole fault injection 

environment of RASP-FIT tool is shown in Figure 4. 

 

Fig. 5     Proposed DEMUX fault injection model (FISA Control unit) [31] 

 

The FIS signal to the line numbered by select port pins. The 

fault selection input is activated by test-bench, and it is 

applied to select and enable all faults sequentially in the SUT. 

The number of Fault Selection (FS) input lines are calculated 

according to (1), 
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                   FS = [log2(Ncopy)]        (1) 

 where FS is the number of fault selection port pins and 

Ncopy is the number of faults injected per copy, respectively. 

The RASP-FIT tool deals with various fault models (for 

example, bit-flip, stuck-at 1 & 0) for the FI analysis of SUT. 

It introduces faults in every permissible location in the target 

system. For these models, XOR, OR and AND gates with 

inverter are utilized as shown in the code. The RASP-FIT 

tool performs the following functions at this stage of 

development, 
 

• Instrumentation of Verilog code (at all abstraction 

levels) 

• Automatic Test Pattern Generation (ATPG) method 

[31], [30] 

• Sensitivity analysis under hardness [11] 

 

V. COMPARISON BETWEEN THE PROPOSED AND 

STATE-OF-THE-ART TOOLS 

 

 Various and fantastic fault injection tools are presented 

in the last couple of decades in the literature. In this study, 

FPGA-based fault injection tools are focused on. All tools are 

useful and designed for specific purposes. Most of the FI 

tools at the code level of design are developed for VHDL 

designs, whereas very few fault injection tools are produced 

for both, i.e. Verilog and VHDL. 

 Some tools provide more substantial area overhead 

during the fault injection analysis of the SUT in comparison 

of other tools, whereas other devices, might increase the 

number of input port pin in an unexpected or unrealistic 

count. If the tools require a large number of pins to select and 

activate individual fault, then it is not a feasible idea for a 

large design with thousands of failures. FPGA-based fault 

injection tools come in the category of emulation based 

technique. In this paper, more focused is put on the 

instrumentation-based FI tools and techniques. 

 In this approach, additional circuitry is added to the 

original design for fault injection analysis, e.g. fault models 

and the fault control unit are required. Most tools need a host 

computer (for process data) and target system (implemented 

on FPGA). The comparison between the proposed tool and 

the tools available in the literature is carried out based on the 

different parameters, as given in Table I. 

 

  

As described earlier, FPGA-based fault injection tools can 

be developed in various stages of the development flow. The 

controllability and observability parameters for the injection 

places in the SUT are decreased as moving further in the 

development flow to bit-stream generation. These tools are 

mostly producing statistical results. FI tools, developed at the 

code level, provide maximum controllability and 

observability. Therefore, the RASP-FIT tool is developed for 

fault injection at the code level of the FPGA-based designs. 

It is also observed that the number of fault models is also 

limited when one move to the development cycle. For 

example, in the bit-stream file injection, only the SEU model 

is used. However, the RASP-FIT tool deals with three fault 

models. 

 

VI. CONCLUSION 

  

  Fault injection is an important technique used to test, 

fault simulation/emulation applications and evaluate the 

design characteristics and dependability parameters, such as 

reliability, safety and fault coverage. Fault injection tools are 

developed for the testing, verification and validation of the 

FPGA-based designs. All the FPGA-based FI tools are 

produced in the specific, focused area of interest and the 

abstraction level of the development flow. In this paper, the 

usefulness of all tools is highlighted and studied. FI tools, at 

the code level, have many advantages such as technology 

independence, high controllability & observability for fault 

injection places, implementation and simulation are carried 

out using any simulator engine. No other specialized 

hardware is required. The RASP-FIT is proposed and 

developed to help design and test engineers to perform fault 

injection analysis for the FPGA based HDL designs at the 

code level with ease. This tool has been developed 

specifically for Verilog designs. 

 

 

 

 

 

 

 

 

 

Gate abstraction level // Different 

fault models 
module faultModels_GL (a ,b, fi_bf , fi_sa1 , 

fi_sa0 , c) 
input a ,b, fi_bf , fi_sa1 , fi_sa0 

; 
output c ; and and_1 (c , fi_bf ^ a ,b) ; 

//Bit−f l i p 
and and_2 (c , fi_sa1 | a ,b) ; 

//Stuck−at 1 and and_3 (c ,~ fi_sa0 & 

a ,b) ; 
//Stuck−at 0 endmodule 

Data−flow abstraction level // Different 

fault models 
module faultModels_DF (a ,b, fi_bf , fi_sa1 , 

fi_sa0 , c) 
input a ,b, fi_bf , fi_sa1 , fi_sa0 

; 
output c ; 

assign c=(( fi_bf ^ a) & b) ; 
//Bit−f l i p assign c=((fi_sa1 | a) & 

b) ; 
//Stuck−at 1 assign c=((~fi_sa0 & a) 

& b) ; 
//Stuck−at 0 endmodule 

Behavioural abstraction level // Different 

fault models 
module faultModels_behave (a , b, fi_bf , 

fi_sa1 , fi_sa0 , c) 
input a ,b, fi_bf , fi_sa1 , fi_sa0 

; 
output c ; 

//always block blocking and 

non−blocking 
c=(( fi_bf ^ a) & b) ; //Bit− 

f l i p 
c<=((fi_sa1 | a) & b) ; // Stuck−at 1 

endmodule 
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TABLE I  FPGA-BASED FAULT INJECTION TOOLS AND TECHNIQUES    

 

List 

No: 
Tool Name Category 

Fault Models 

Used 
HDL 

Functions 

Perform 
Remarks 

1 Flipper Reconfiguration SEUs - 
Robustness 

measurement 
Fault injection by 

heavy ion radiation 

2 
FT-UNSHADES 

&-2 
Reconfiguration SEUs VHDL 

Reliability 

measurement 

Fault injection by 

heavy ion radiation 

3 NETFI, NETFI-2 Instrumentation 
SET/SEU, 
Stuck at 

-both- 

Sensitivity 

evaluation of soft-

errors 

Fault injection 
in net-list 

4 FITO Instrumentation 
Stuck-at, 

Bit-flip 
Verilog 

Observe 

responses for 
error and failures 

Provides good 

Controllability, 
& Observability 

5 FUSE Instrumentation 
Saboteur 

Injections 
VHDL 

Speed-up 

Simulation/Emulation 

Simulator Engine 

dependent 

6 DFI Instrumentation 
SEUs 

in registers 
VHDL/Verilog 

Salient faults, error 

timeouts 

Platform dependent 

ASTERICS 

7 FIFA Instrumentation Bit-flip 
VHDL/Verilog 

(RTL) 
Robustness 
calculations 

Single & 
multiple fault analysis 

8 FIDYCO Instrumentation 
SEUs 

in registers 
VHDL Fault tolerance assessment 

Platform dependent 

ASTERICS 

9 DBIT Instrumentation 

fault in coding 

variable, signals, 

constant 

VHDL independent verification 
Verification and 

Validation (IV&V) 

10 RASP-FIT Instrumentation 
SEUs (bit-flip) 
Stuck at 1 & 0 

Verilog 

FIA, Testing, Hardness 

analysis 

Compaction, Redundancy 

Technology independent 
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